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ABSTRACT 

Sanitation, renewable energy, and food security are among the most pressing global development needs of 

the century, especially for small cities with rapid population growth. Currently, 53% of the world’s population either 

lacks access to improved sanitation or discharges fecal waste to the environment without treatment. Furthermore, 

80% of food consumed in developing regions is produced by 500 million small farms, and while many of them are 

still rain-fed, irrigated agriculture is increasing. The post-2015 Sustainable Development Goals, recently adopted by 

the United Nations, include targets to address the water-energy-food nexus. Wastewater reuse in agriculture can be 

an important solution for these goals, if it is done safely. Globally, 18 – 20 million hectares of agricultural land are 

irrigated with wastewater, but much is untreated, unregulated, or unsanctioned, causing concerns and uncertainty 

about health risks.  

There is a need to better understand pathogen removal in natural and non-mechanized wastewater treatment 

systems, such as waste stabilization ponds (WSPs) and upflow anaerobic sludge blanket (UASB) reactors, which are 

commonly used in small cities and towns. Riverbank filtration (RBF) is also a natural technique used by farmers in 

developing countries to treat surface water polluted with untreated sewage, but pathogen removal in these systems 

has seldom been assessed in developing countries. The focus of this dissertation is on pathogen removal in natural 

and non-mechanized wastewater treatment and reuse systems, to evaluate the health implications of water reuse for 

irrigation, with the following three objectives: 1) assess the current understanding of virus removal in WSP systems 

through a systematic review of the literature; 2) measure the removal of viruses and their association with particles 

in systems with WSPs, UASB reactors, or both; and 3) assess the fate and transport of pathogens and fecal indicators 

in wastewater treatment systems with direct and indirect reuse for irrigation to estimate microbial risks. 

To advance the understanding of virus removal in WSP systems, a comprehensive analysis of virus 

removal reported in the literature from 71 different WSP systems revealed only a weak to moderate correlation of 

virus removal with theoretical hydraulic retention time (HRT). For each log10 reduction of viruses a geometric mean 

of 14.5 days of retention was required, but the 95th percentile of the data analyzed was 54 days. Also, whereas 
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virus-particle association and subsequent sedimentation has been assumed to be an important removal mechanism 

for viruses in WSPs, the literature review revealed a lack of evidence to confirm the validity of this assumption.  

The association of human adenovirus (AdV) with wastewater particles was assessed in five full-scale 

wastewater treatment systems in Bolivia, Brazil, and the United States (two with only WSPs, two with a UASB 

reactor and WSPs, and one with only UASB reactors). A mesocosm study was also conducted with WSP water from 

one of the full-scale systems, and some samples were also analyzed for pepper mild mottle virus (PMMoV), F+ 

coliphage, culturable enterovirus (EV), norovirus (NoV), and rotavirus (RV). Results indicate that WSPs and UASB 

reactors affect virus-particle associations in different ways, which may differ for different viruses. In UASB reactor 

effluent, PMMoV was more associated with particles <180 µm, showed no indication of settling in subsequent 

ponds, and appeared to degrade in pond sediments after 5 days. In contrast, AdV in UASB reactor effluent was 

associated with small and large particles, and in subsequent ponds, particle-associated AdV showed evidence of 

possible settling or more rapid decay at the water surface. AdV and culturable EV were also more volumetrically-

concentrated in UASB reactor sludge than they were in untreated sewage, WSP water, UASB effluent, and WSP 

sediments, indicating that the reactors may cause these viruses to become entrapped and concentrated in granular 

sludge. Some viruses may be removed in the sludge, but others exit the reactors in solution and attached to particles. 

The resuspension of pellets from centrifuged UASB reactor sludge samples in an eluant buffer indicated reversible 

AdV association with granular sludge, but some associations with particles in solution may not be reversible. 

The fate and transport of pathogens and fecal indicators was assessed in Bolivia for two WSP systems with 

direct reuse for irrigation, and one on-farm RBF system used to treat surface water polluted by untreated sewage. In 

the WSP systems, despite HRTs of 10 days, pathogen and fecal indicator removal was generally ≤1-log10, possibly 

due to overloading and short-circuiting from sludge accumulation. The RBF system provided removals on the order 

of 2-log10 for protozoan parasites, 3-log10 or more for viruses, and 4-log10 or more for bacteria. The use of RBF also 

reduced cumulative estimated health burdens associated with irrigated lettuce. Irrigation of lettuce with untreated 

river water caused an estimated disease burden that represents 37% of the existing burden from acute diarrhea in 

Bolivia; when RBF was used, this decreased to only 1.1%, which is not epidemiologically-significant, and complies 

with the World Health Organization guidelines. Ratios of concentrations of microorganisms in irrigation water to 

their respective concentrations in soil or crops were calculated, to assess transfer from irrigation water to soil or 

crops. These ratios (with units mL g-1) were generally < 0.1 mL g-1 for coliphage, between 1 and 100 mL g-1 for 
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Giardia and Cryptosporidium, and generally between 100 and 1,000 mL g-1 for helminth eggs. Higher ratios could 

indicate more efficient transfer from water to soil or crops, longer persistence in soil or on crops, or slower leaching 

away from soil or crops.  

The results from this research demonstrate that pathogen removal in full-scale natural wastewater treatment 

systems happens via complex mechanisms that vary with respect to pathogen type, treatment systems configuration, 

and other environmental and operational parameters. Future research and innovation efforts should focus on the use 

of a combination of natural and non-mechanized technologies, surface-flow systems (e.g., WSPs) and subsurface 

systems (e.g., RBF), applied at both semi-centralized (e.g., wastewater treatment plant) and decentralized levels 

(e.g., on farms), to evaluate how this affects the efficiency and resiliency of pathogen removal. Also, future research 

is needed to further elucidate reasons for the observed differences in virus-particle associations in natural wastewater 

treatment systems. 
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1 INTRODUCTION 

1.1 Background 

In September 2015, the United Sanitation adopted the post-2015 Sustainable Development Goals (SDGs), 

which include sanitation, renewable energy, and global food security among the most pressing sustainable 

development needs of the century (United Nations 2015a; b). The Millennium Development Goals (MDGs), which 

expired in 2015, included targets to half the proportion of the population experiencing extreme hunger (Target 1.C) 

and lacking basic sanitation (Target 7.C). While progress has been made for Targets 1.C and 7.C, both targets were 

missed, with one in four children still experiencing stunted growth, and 2.4 billion people in the world without 

access to improved sanitation (United Nations 2015b). Furthermore, improved sanitation was poorly defined by the 

MDG Joint Monitoring Program (JMP), as it did not take into account the safe reuse or return of collected waste to 

the environment. For example, simple access to a sewer connection was counted as improved sanitation by the JMP, 

however fewer than 35% of cities in developing countries actually treat their wastewater (UNEP and WHRC 2007), 

and 1.5 billion people worldwide discharge sewage to the environment without any form of treatment at all (Baum et 

al. 2013). This practice leads to a geographical translocation of health risks (often from wealthier urban 

neighborhoods to poorer slums located downstream and in flood plains), as well as the widespread de facto (indirect 

unplanned) reuse of untreated wastewater.  

The post-2015 SDGs stress a more integrated approach to sustainable development, placing emphasis on 

health as well as the nexus of food, energy, and water systems (United Nations 2013). There is now a large body of 

accumulating evidence about the interconnectivity of food security and nutrition with sanitation, hygiene and health. 

Food insecurity and malnutrition manipulate the human gut microbiome, which is thought to exacerbate health risks 

caused by enteric pathogens (Kau et al. 2011). Diseases associated with poor sanitation currently account for 

280,000 diarrhea deaths that occur every year in low- and middle-income countries (Prüss-Ustün et al. 2014). In 

addition, nearly 13% of all people in developing regions of the world are undernourished and each year, more than 

90 million children are underweight (United Nations 2015b). From an economic standpoint, reducing malnutrition 
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among children (by enhancing food security and improving sanitation and hygiene) is considered to be the most 

cost-effective development intervention, yielding nearly $45 for each dollar invested (United Nations 2013).  

Energy was not addressed by the MDGs, but is central to the post-2015 SDGs, which have a specific target 

to increase renewable energy. Global food security is strongly influenced by the management of water, energy, and 

nutrients. For example, the dependency of fertilizer prices on the cost of fossil fuels was partially blamed for past 

food crises (Esmaeili and Shokoohi 2011); also, climate change and recent increases in water demand for biofuel 

production have contributed to the exacerbation of global water scarcity, causing food price spikes (Rosegrant et al. 

2009). Wastewater treatment technologies that integrate a waste-to-energy approach can have synergy with multiple 

SDGs. For example, anaerobic wastewater treatment technologies can potentially produce more than 0.5 kWh of net 

energy gains per cubic meter of wastewater treated (McCarty et al. 2011), which supports SDG targets 7.2 and 6.2. 

Waste-to-food systems such as sanitation and wastewater treatment technologies that enable the safe reuse of treated 

water for irrigation or stabilized biosolids for soil amendment can contribute simultaneously to SDG targets 6.2, 6.6, 

and 2.4, and help manage nutrient cycles. The phosphorus in human waste alone comprises 22% of global 

phosphorus demands (Mihelcic et al. 2011), and the nutrients in domestic wastewater account for 10 to 15% of 

fertilizer imports for countries with food deficits and net food imports (see Section 2.2.2 of this dissertation). Access 

to clean water and better management of nutrients (i.e. managing the nitrogen cycle) have also been identified as 

two of the fourteen grand engineering challenges of this century (National Academy of Engineering 2008). 

Small cities and towns can be defined as urban centers with fewer than 500,000 residents (United Nations 

2011). These small cities and towns tend to have poorer access to water and sanitation relative to larger urban 

centers, and fall into what has been described as an infrastructure management gap: neither the community-based 

management models successfully used in rural areas, nor the centralized utility models that have been effective in 

larger cities, work well for small cities and towns (World Bank 2008). Because of the lack of access to highly-

skilled operators, the use of non-mechanized and natural wastewater treatment systems is very common in small 

cities and towns, especially in developing countries (Mara 2003). For the purposes of this dissertation, non-

mechanized wastewater treatment systems are defined as systems that do not require large inputs of external energy 

and materials, and which generally do not have mechanized equipment or moving parts (except for wastewater 

conveyance). Natural wastewater treatment systems would include a subset of non-mechanized systems that are 

constructed using mostly natural materials (e.g., soil, gravel, sand, clay). Examples of natural systems include waste 
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stabilization ponds, constructed wetlands, overland flow systems, rock filters, or reed beds. Examples of non-

mechanized systems that are not considered natural systems include anaerobic reactors, such as Imhoff tanks, 

anaerobic filters, upflow anaerobic sludge blanket reactors, and expanded or fluidized and granular bed reactors. 

Natural wastewater systems have been used globally for centuries for wastewater reuse. They also have more 

preferable social, environmental, and economic sustainability indicators than mechanical treatment systems (Muga 

and Mihelcic 2008), especially when used for integrated resource recovery (Cornejo et al. 2013).   

Operation and maintenance of wastewater treatment systems is central to their success. In low-resource 

regions and developing country settings, many natural wastewater treatment systems are overloaded and under-

maintained. For example, in a recent study of wastewater management in 105 Bolivian cities and towns (89% of 

which had populations of 50,000 or less), the Bolivian Ministry of Water and the Environment found that 37% of 

natural (non-mechanized) wastewater treatment plants studied were not operating at all, and less than 5% were 

achieving acceptable treatment efficiency (Ministerio de Medio Ambiente y Agua 2013). Operation and 

maintenance was identified as the principal problem for 63% of these malfunctioning treatment plants. Furthermore, 

despite the inadequate treatment, farmers were still reusing nearly half of the volume of this wastewater to irrigate 

more than 5,700 hectares. Worldwide, at least 4.3 billion cubic meters of treated municipal wastewater and 8.3 

billion cubic meters of untreated municipal wastewater are used to irrigate more than 6 million hectares (FAO 

2015), though others have estimated that untreated or polluted water is used to irrigate as many as 18 million 

hectares (Drechsel et al. 2010), or 20 million hectares (Raschid-Sally and Jayakody 2008). Globally, there is a 

widespread need for wastewater management systems that provide efficient and resilient pathogen removal to enable 

the safe reuse of water in agriculture, and that can be easily operated and maintained. 

Wastewater treatment ponds (lagoons), or waste stabilization ponds (herein referred to as WSPs), are 

shallow engineered basins enclosed by earthen berms, and are designed to stabilize and treat wastewater via natural 

processes involving sunlight, algae, and bacteria. Of the wastewater treatment facilities in the United States that are 

required to comply with the Clean Water Act, WSPs are the most commonly-used technology, not necessarily in 

terms of flow rate, but in terms of the total number of facilities, according to the Clean Watershed Needs Surveys of 

2000 and 2008 (US EPA 2000, 2008a, 2011). WSPs are also the most common technology used to treat wastewater 

in New Zealand, Mexico, Brazil, Bolivia, and the Dominican Republic (Mara 2003; Ministerio de Medio Ambiente 

y Agua 2013; Noyola et al. 2012). There are approximately 8,000 WSP systems in the United States (US EPA 2000, 
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2008a) and 2,500 in France (Mara and Pearson 1998) (Figure 1). Because they are relatively inexpensive and simple 

to construct, operate and maintain, they are particularly common in small cities and towns, especially when there is 

ample available land space. The use of chlorine, peracetic acid, and UV germicidal lamps for disinfection of treated 

wastewater may be common in larger cities and industrialized regions, however these technologies may not be 

accessible, affordable, or appropriate for small cities and towns, especially those located in low-income regions. 

Many WSP systems throughout the world rely solely on natural mechanisms for pathogen removal, such as 

sedimentation, predation, starvation, pH extremes, and sunlight-mediated mechanisms. 

 
Figure 1. Location of waste stabilization pond (lagoon) systems in the United States, as reported in the 
Environmental Protection Agency’s Clean Watersheds Needs Survey Reports to Congress from 2000 and 
2008 (US EPA 2000, 2008a). 

Connecting wastewater treatment with resource recovery, environmental sustainability, and food security 

development goals may be an effective sustainable wastewater management strategy for small cities and towns, 

especially in developing countries. The livelihoods of residents in these regions are highly dependent on food 

production and ecosystem management services, with farming and fishing being two of the most important activities 

(FAO 2011).  
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1.2 Research Gaps 

The natural mechanisms responsible for pathogen removal and inactivation in WSPs are extremely 

complex and differ by pathogen type. For example, helminth eggs and protozoan parasites are mostly removed via 

sedimentation, while bacteria and viruses are removed by sunlight disinfection, predation, and inactivation due to 

environmental factors. In particular, the efficiency of virus removal in WSPs and the relative importance of different 

mechanisms is still not very well understood. This prevents the optimization of virus removal in WSP systems 

through the modification of operational or design parameters. Recent laboratory-scale studies have demonstrated the 

complexity of sunlight-mediated mechanisms, specifically how inactivation rates can differ for different types of 

viruses and can also be affected by a virus’ associations with particles or their proximity to natural organic matter 

(Bosshard et al. 2013; Kohn and Nelson 2007; Love et al. 2010; Mattle et al. 2015; Romero et al. 2011, 2013; 

Rosado-Lausell et al. 2013; Templeton et al. 2008). Despite this, the study of virus-particle associations in WSPs has 

been extremely limited (Ohgaki et al. 1986; Sobsey and Cooper 1973). Also, during the past 30 years, high-rate 

anaerobic technologies, such as the upflow anaerobic sludge blanket (UASB) reactor, have become more common 

for the treatment of domestic wastewater in countries with warm climates (Lettinga 2010). While energy from 

biogas can be easily recovered from these anaerobic reactors, post-treatment is required for additional pathogen 

removal. WSPs are often used for the post-treatment of domestic wastewater from UASB reactors. A 4-log10 

reduction in the concentration of Escherichia coli was reported for shallow WSPs treating the effluent of a UASB 

reactor (von Sperling and Mascarenhas 2005), however the removal of viruses in WSPs treating effluent from 

UASB reactors has not been studied. Research on this topic is needed, especially since UASB reactors transform the 

microbial community and the nature of organic matter and particles in the wastewater, potentially affecting the way 

viruses associate with particles. 

Centralized or semi-centralized wastewater treatment systems provide one barrier to the transmission of 

pathogens between feces and irrigated food products. Understanding pathogen removal in centralized or semi-

centralized wastewater management systems is only one part of developing policies to protect public health during 

water reuse activities. As highlighted above, there is a large percentage of people in the world using sewerage 

systems with no wastewater treatment or with wastewater treatment systems that are overloaded, under-maintained, 

failing, or abandoned. Given the high demand for irrigated agriculture, there is a need to evaluate the effect of 

overloading on pathogen removal in natural wastewater treatment systems, and also provide intermediary or 
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alternative solutions for safe water reuse, such as on-farm water treatment methods. Riverbank filtration (RBF) is 

commonly used in developing countries to treat irrigation water from polluted rivers, but its effectiveness at 

removing pathogens from river water that is highly contaminated by untreated sewage (as is the case in many 

developing countries) has not been well-studied. On-farm solutions such as RBF can be used in combination with 

centralized wastewater treatment systems or as intermediary solutions, while centralized wastewater treatment 

systems are being constructed or rehabilitated. The World Health Organization (WHO 2006) recommends the use of 

quantitative microbial risk assessment (QMRA) to estimate health risks associated with wastewater irrigation. 

QMRA has been used to guide water policy in the Netherlands and Australia (Bichai and Smeets 2013; Mara 2013), 

and to estimate illnesses from drinking water (Macler and Regli 1992), water reuse (US EPA 2012a), and 

recreational bathing (US EPA 2010a) in the United States. However, the use of QMRA in developing countries is 

more challenging, particularly because data are often scarce (Howard et al. 2006). The following limitations are 

associated with previous uses of QMRA to evaluate the risk of wastewater irrigation: a lack of data needed to 

estimate exposure (Hamilton et al. 2006a; Hamilton et al. 2007; Pavione et al. 2013); the oversimplification of dose-

response models (Schmidt et al. 2013; Teunis and Havelaar 2000); and the failure to incorporate uncertainty 

associated with model parameters (Donald et al. 2011). 

 

1.3 Research Objectives 

The overall goal of this dissertation is to evaluate the health implications of wastewater reuse for irrigation 

in small cities by studying pathogen removal in natural and non-mechanized wastewater management systems. The 

following are the specific research objectives: 

1.  Assess the current understanding of virus removal in WSP systems through a systematic literature review  

2. Measure the removal of viruses and their association with particles in WSPs, UASB reactors, and 

systems with UASB reactors and WSPs 

3. Evaluate direct and indirect wastewater reuse for irrigation a) by comparing the fate and transport of 

pathogens and fecal indicators in WSPs and in on-farm RBF systems treating sewage-impacted river 

water, and b) by estimating health burdens from consuming wastewater-irrigated lettuce using a QMRA 

model that incorporates parameter uncertainty 
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1.4 Dissertation Synopsis 

This dissertation is organized into six chapters. The present chapter provides background and a brief 

overview of the research needs. Chapter 2 includes a policy analysis about wastewater management for small cities 

and a review of emerging challenges for safe resource recovery in natural wastewater treatment systems. Chapter 3 

includes a critical and systematic review of virus removal in WSP systems, addressing objective 1. Chapter 4 

includes results from studies of virus removal and particle associations in one pilot-scale and four full-scale 

wastewater treatment systems and in a mesocosm using WSP water from one of the systems. Chapter 5 includes an 

investigation of the fate and transport of pathogens and fecal indicators in two WSP systems with direct water reuse 

for irrigation, and one site where sewage-contaminated river water is used for irrigation, with or without treatment 

from an on-farm RBF system. A QMRA model is used to assess microbial risk and the health burden associated 

with consumption of irrigated lettuce. Overall conclusions and recommendations for future research are presented in 

Chapter 6. 
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2 EMERGING CHALLENGES FOR INTEGRATED WASTEWATER RESOURCE RECOVERY IN 

SMALL CITIES 

2.1 Integrating Protection of Health and the Environment with Resource Recovery and Food Security1 

2.1.1 Introduction 

More than half of the urban population in developing countries lives in cities with less than 500,000 

inhabitants, which are generally more connected with agricultural production zones than they are with other urban 

areas (United Nations 2011). These small cities are expected to double both in number and in population by 2025 

(WaterAid/BPD 2010). Residents of these areas have some of the worst access to water, sanitation, and hygiene 

services, and their economic prosperity and health is dependent on food security and ecosystem management (FAO 

2011). Water and sanitation solutions for these areas are complex; for example, dry sanitation technologies such as 

composting latrines have been promoted and provide an appropriate solution for some areas, but will not work in 

others for social and cultural reasons (Nawab et al. 2006).  

Between 1990 and 2000, 248 million urban dwellers in Asia, Africa, and Latin America made new 

connections to sewer systems, representing a third of the total urban population gaining access to improved 

sanitation during that time (WHO-UNICEF 2000). Growing populations in small cities of developing countries will 

likely continue to connect to sewer systems; however, without adequate treatment, the discharges from those 

systems will degrade surface waters in areas that already have poor water quality, leading to increased health risks 

and decreased economic opportunities for those who depend on water quality for their livelihood (Fry et al. 2008). 

In larger industrialized cities, wastewater is often treated via mechanized processes that require energy 

inputs, only a fraction of which can be recovered by harvesting biogas from the anaerobic digestion of sludge. While 

anaerobic wastewater treatment processes can potentially increase overall energy recovery yields (McCarty et al. 

2011), wastewater reuse also provides significant energy and carbon emission savings by offsetting energy needed 

                                                           
1 Reprinted with permission from: Verbyla, M.E., Oakley, S.M., Mihelcic, J.R. (2013) “Wastewater Infrastructure for Small Cities in an 

Urbanizing World: Integrating Protection of Human Health and the Environment with Resource Recovery and Food Security,” Environmental 
Science and Technology, Volume 47, Number 8, pages 3598 – 3605. Copyright 2013 American Chemical Society. Permission is included in 
Appendix F. 
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for manufacturing and distributing fertilizers and supplying irrigation water (Mo and Zhang 2012). Wastewater 

reuse is also one solution to provide global food security amidst the looming phosphorus crisis (Cordell et al. 2011).   

In developing countries, community-managed infrastructure often fails prematurely due to maintenance 

deficiencies that result from decreasing financial durability and community activity as the system ages (Schweitzer 

and Mihelcic 2012). Small cities in developing countries tend to fall into what has been termed an infrastructure 

management gap (World Bank 2008)—they are large and compact enough to have centralized utilities (such as 

sewer collection systems), but they are too small to have the resources within the community to manage highly-

mechanized infrastructure. Wastewater treatment systems in developing countries are often overloaded or 

abandoned altogether due to energy demands, lack of skilled operators, and inadequate sludge management (Oakley 

2005a). In fact, it’s estimated that 1.5 billion people use sewerage facilities with no treatment (Baum et al. 2013) and 

global estimates of the total area irrigated with untreated wastewater range from 3 million (Drechsel et al. 2006) to 

20 million hectares (Raschid-Sally and Jayakody 2008). This places farmers, vendors, and consumers at a greater 

risk for excreta-related diseases, which account for one-tenth of the global disease burden (Mara et al. 2010b).  

When determining the most appropriate way to sustainably manage wastewater in small cities of 

developing countries, policy-makers, development agencies, and local stakeholder groups face a continuum of 

alternatives and tradeoffs. Wastewater contains water, nutrients, and energy resources, which can each be recovered 

for reuse. Alternatively, treated effluents can be discharged, if nutrients are removed to limits that protect receiving 

waters from nutrient imbalances. Yet, the tradeoff for this may be the need for additional complexity, as well as 

energy and chemical inputs for retrofitting or expanding treatment plants to include tertiary nutrient removal, and for 

operation, maintenance, laboratory monitoring, and evaluation tasks (US EPA 2008b). However, if treated 

wastewater is used to irrigate crops, nutrient limits do not need to be monitored, and farmers may even be able to 

expand operations, increase productivity, or offset costs associated with commercial fertilizers. The public health 

impact of wastewater irrigation, if pathogens are not removed or inactivated, is yet another tradeoff. The removal of 

helminth eggs is especially critical if wastewater is to be reused for irrigation in developing communities, where 

incidence rates of helminthiasis are high.  

Given the need to make informed decisions about wastewater management in urbanizing developing 

countries amidst this continuum of alternatives and tradeoffs, priorities should be determined regarding the recovery 

of water, nutrient, and energy resources. Furthermore, it is important to evaluate resource recovery in systems with 
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appropriate technologies that fill the infrastructure management gap in small developing country cities, in a way that 

links sanitation goals with urban water management and food production. Can water, nutrients, and energy all be 

recovered, while meeting appropriate health targets and protecting the environment? 

Accordingly, the purpose of this study is to evaluate the resource recovery potential of wastewater from 

two treatment systems serving small (and growing) cities in the Yungas region of Bolivia: one consisting of three 

stabilization ponds in series (three-pond system), and the other consisting of an upflow anaerobic sludge blanket 

(UASB) reactor followed by two polishing ponds in series (UASB-pond system). Specifically, the two systems are 

compared with respect to their removal of conventional wastewater quality parameters, nutrients, pathogens 

(helminth eggs, Giardia cysts, Cryptosporidium oocysts), and bacterial pathogen indicators, using the 2006 World 

Health Organization (WHO) guidelines (WHO 2006) as a benchmark.  Nitrogen and phosphorus concentrations in 

the effluent are measured, to determine their potential fertilizer value for agricultural reuse. Assessing the 

wastewater reuse potential in geographical settings like this is particularly important since a recent study of the 

watersheds in this agriculturally-productive region concluded that they exhibit water stress due to climate change 

(Fry et al. 2012). 

Stabilization ponds have been used globally to treat wastewater for over 100 years, and are especially 

common in developing country cities of all sizes. The UASB reactor is an advanced anaerobic wastewater treatment 

technology that allows for the recovery of biogas. Originally developed to treat industrial wastewater, these reactors 

were successfully demonstrated at a pilot scale for the treatment of domestic wastewater in the 1980s, and thousands 

of full-scale systems have since been implemented worldwide, especially in Latin America and South Asia (Lettinga 

2010). 

 

2.1.2 Materials and Methods 

The two systems in this study are located within 20 kilometers from each other, at elevations of 400 and 

460 meters above sea level, in a tropical region with an average annual ambient temperature of approximately 25°C 

(Instituto Nacional de Estadistica 2011). The three-pond system started out serving a population of approximately 

420 people in 2006, and by 2012, the population connected to the system had grown to 780 people. Twenty-four 

hour flow measurements taken in this system during the month of June between 2007 and 2012 resulted in average 

daily flowrates that ranged from 52 m3/day (in 2007) to 121 m3/day (in 2012). The average per capita flow in this 
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community was 120 ±32 liters/person/day. The UASB-pond system started out serving a population of 

approximately 780 people in 2006, but has since increased coverage to now serve approximately 1,310 people. 

Twenty-four hour flow measurements taken during the month of June between 2007 and 2012 show that the average 

daily flowrate in this system has ranged from 43 m3/day (in 2007) to 124 m3/day (in 2012). The average per capita 

flow between 2007 and 2012 in this system is only 63 ±21 liters/person/day. The apparent difference in the observed 

per capita flow rates may be explain by the fact that water supply in the UASB-pond community is metered 

(customers pay a rate that is based on consumption), whereas customers in the three-pond community pay a flat 

monthly rate regardless of use. 

Figure 2 depicts a schematic of both systems, showing the sampling locations. All wastewater samples 

were collected in June (during the dry season). Grab samples were collected from 2007 to 2011 during the hours of 

peak daily flow (between 7:00 a.m. and 10:00 a.m.) and analyzed for thermotolerant coliforms, in accordance with 

either the most probable number method or the membrane filtration method (APHA et al. 2012). The maximum 

holding time for grab samples was 24 hours. Composite samples were generally collected in one or more 10-liter 

plastic containers in the field at hourly intervals over the course of 24 hours, such that the volume collected each 

hour was proportional to the flow rate measured during that hour.  Composite samples were analyzed annually from 

2007 to 2011 for five-day biochemical oxygen demand (BOD5), total suspended solids (TSS), total nitrogen (TN), 

and total phosphorus (TP) in accordance with Standard Methods (APHA et al. 2012). Composite samples were also 

analyzed for helminth eggs (in 2011 and 2012) and for Giardia and Cryptosporidium (in 2012). The sample volumes 

for physical-chemical parameters were 2.0 liters each; sample volumes for helminth egg analysis ranged from 2.0 

liters to 32.1 liters; and sample volumes for Giardia and Cryptosporidium analysis were 4.0 liters each. The 

maximum holding time for composite samples was 48 hours. All samples were either stored on ice in a cooler, or in 

a refrigerator, until the time of analysis in the laboratory. 

Helminth egg samples that were larger than 4.0 liters in volume were concentrated in the field as follows: 

samples were transferred to buckets and placed on a flat surface for at least four hours to allow eggs to settle, after 

which time the supernatant was decanted using a siphon and the remaining sediments were transferred into pre-

rinsed 2-liter plastic bottles and transported within 48 hours on ice to the Centro de Aguas y Saneamiento Ambiental 

(CASA) laboratory (Cochabamba) for further processing and analysis. Samples for conventional water quality 

parameters and for Giardia and Cryptosporidium analysis were not concentrated in the field, but were transferred 
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directly into pre-rinsed 2-liter plastic bottles for delivery to the laboratory. Sludge core samples were also collected 

from the first pond in the three-pond system (in 2011 and 2012) and from the UASB reactor (in 2012), and were 

transferred directly into opaque plastic containers, placed on ice and transported within 48 hours to the laboratory.  

 

 

Figure 2. Schematic diagrams of the upflow anaerobic sludge blanket (UASB) reactor and pond (UASB–
pond) system (top); and the waste stabilization pond (three-pond) system (bottom). 

In the laboratory, helminth egg samples were further concentrated using CASA’s standard protocol, which 

has been described in detail elsewhere (Verbyla 2012). Briefly, eggs were isolated from samples using 

sedimentation, flotation, and two-phase separation, as described by the Mexican Test Method for the Determination 

of Helminth Eggs in Water Samples (Secretaria de Comercio y Fomento Industrial 1999), with the exception that 

magnesium sulfate was used for flotation instead of zinc sulfate. Representative portions of the concentrated 

samples were transferred to 0.1-mm-deep Neubauer counting slides. Concentrated samples were gently mixed by 

turning the centrifuge tube over several times before removing the aliquot with a micropipette for observation under 

the microscope. Observations were made (2-4 repetitions) on an area of 18 mm2 of the slides under a microscope 

(Eclipse E600, Nikon) at either 400x or 1000x magnification, where helminth eggs were identified and enumerated. 

The average count was used to calculate the concentration of helminth eggs in the original sample. Minimum levels 
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of detection varied depending on the volume of sample collected, and the final concentrated volume of each sample 

(which ranged from 1.1 – 5.0 ml per sample). 

The number of viable helminth eggs was judged by adding 0.1 ml of 0.4% Trypan Blue solution to a 

portion of the concentrated sample containing eggs. Trypan Blue, which stains non-viable cells, leaving living cells 

unstained, may over-predict the number of non-viable eggs, since the amount of stained eggs increases with respect 

to time (WHO 2004). To minimize these effects, samples were read within five minutes of adding the stain. Eggs 

that were unstained within the first five minutes were judged as viable. It is also important to note that some of the 

eggs may have been inactivated or destroyed by the ether used in the final step of the concentration process (Nelson 

and Darby 2001). 

Samples were analyzed for Giardia and Cryptosporidium in general accordance with EPA Method 1623 

(US EPA 2005). Briefly, samples were concentrated as described for the helminth egg analyses, with the exception 

that the flotation steps were omitted. Giardia cysts and Cryptosporidium oocysts were isolated from the 

concentrated samples using immunomagnetic separation with Dynabeads (Life Technologies). The entire volume of 

each concentrated sample (two repetitions per sample) was added to slide wells. Slide wells were prepared for 

differential interference contrast microscopic evaluation by adding mounting medium, a fluorescein-labeled 

monoclonal antibody reagent, and DAPI stain, yielding two final volumes of 100 μl in each well (100 μl per 

repetition). The number of cysts and oocysts were counted under the microscope, and the average count from the 

two repetitions is reported with the standard deviation.  

 

2.1.3 Results 

In order to compensate for the different per capita water usage rates in the two communities, a mass 

balance was performed on each system, and the removal of water quality parameters are compared as the percent of 

mass that was removed between the influent and effluent points (Figure 3). The observed removal of BOD5, TSS, 

TN and TP was similar in both systems. Removal of BOD5 was 91.2 ±5.4% for the three-pond system and 86.9 

±9.8% for the UASB-pond system, which is near the higher range of expected removal for systems using these 

technologies (Verbyla 2012).  Removal of TSS was 84.8 ±8.9% for the three-pond system and 91.3 ±3.8% for 

UASB-pond system. The removal of TN and TP in the three-pond system was only 43.2 ±30.5% and 40.7 ±32.4%, 

respectively; and in the UASB-pond system, only 28.7 ±33.8% and 22.8 ±27.1%, respectively.  
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Figure 3. Observed mass balance removal of total nitrogen, total phosphorus, and thermotolerant coliforms 
(a) in the three-pond system (□) and in the UASB−pond system (■); also, (b) in the facultative pond from the 
three-pond system (□) and in the UASB reactor (■). 

The removal of pathogens and pathogen indicators varied in both systems. The three-pond system provided 

a 3.4-log10 reduction of thermotolerant coliforms on average (n=6), which may be higher than the 2.3-log10 reduction 

(n=5) that was provided in the UASB-pond system (p=0.1261). The concentrations of parasites detected in samples 

from both systems are shown in Figure 4. In the three-pond system, Giardia cysts were detected at a concentration 

of 159.5 ±2.8 cysts/L at the influent and 22.8 ±3.9 cysts/L at the effluent. Cryptosporidium oocysts were detected at 
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6.0 ±1.4 oocysts/L at the influent and 4.0 ±1.4 oocysts/L at the effluent. The UASB-pond system appeared to 

provide similar removal: Giardia cysts were detected at 242.3 ±42.8 and 73.3 ±13.8 cysts/L at the influent and 

effluent, respectively. Cryptosporidium oocysts were detected at 9.5 ±6.4 and 6.5 ±1.4 at the influent and effluent, 

respectively.  

 

Figure 4. Observed removal of (a) helminth eggs, and (b) Giardia cysts, Cryptosporidium oocysts in both 
systems. Bar graph represents average concentration; all “non-detect” samples were replaced with a value 
equal to half of the limit of detection. Whiskers represent standard deviations. 

Helminth eggs were detected in the untreated sewage of the three-pond system (1,605 ±1,242 eggs/L, n=3) 

and the UASB-pond system (average concentration of 1,809 ±1,129 eggs/L, n=3). The most common species 

detected in the untreated sewage samples were Taenia (78.9%), Ascaris (19.1%), Trichuris (1.7%), and Hookworm 

(0.3%). The only species detected in the treated effluent of the three-pond system was Taenia, but both Taenia and 

Ascaris eggs were detected in one sample from the effluent of the UASB-pond system. While Taenia is not one of 

the four helminth genera referred to in the WHO Guidelines for wastewater reuse (Mara 2007), Taenia eggs have 

been detected in the effluents of a waste stabilization pond system in Tunisia with a theoretical HRT of 20 days (Ben 

Ayed et al. 2009), and in 6-10 month-old composted feces from toilets in Panama (Mehl et al. 2011). The ingestion 

of eggs from the swine species (Taenia solium) can cause cysticercosis in humans, which is an emerging, neglected 

disease (Flisser 2011; Sorvillo et al. 2011) and the leading cause of acquired epilepsy in the world (García et al. 

2003). 

The three-pond system provided an average overall removal of 97% of all species of soil-transmitted 

helminth eggs (including Taenia), and Taenia was the only species detected in the system effluent. Conversely, a 

large number of helminth eggs (including both Taenia and Ascaris species) was detected in one of the two 
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composite samples collected at the effluent of the UASB-pond system. Sludge samples from the UASB reactor also 

had a lower average concentration of helminth eggs (236 ±225 eggs/g TS) than sediment samples collected near the 

inlet of the facultative pond in the three-pond system (841 ±606 eggs/g TS) (p=0.0951).  

Parasites pose a risk to human health only if they are viable and infective to humans at the time of 

exposure. Therefore, it is important to understand not only how many parasites are present, but also what percentage 

is still viable. In this study, one out of six helminth eggs isolated from untreated sewage samples entering the three-

pond system, and one out of eight helminth eggs from untreated sewage samples entering the UASB-pond system 

were judged to be viable. And while none of the eggs isolated from pond effluents in either system (n=18 eggs) were 

judged to be viable, one-third of the eggs isolated from the UASB reactor effluent samples (n=9 eggs) were judged 

to be viable.  Sludge samples also showed greater egg viability: one-third of eggs isolated from UASB reactor 

sludge (n=15 eggs), and 9 of 24 eggs from the facultative pond sludge were judged to be viable.  

 

2.1.4 Discussion 

There is not much difference between the two wastewater treatment systems in terms of their ability to 

remove BOD5 and TSS.  While the average removal of BOD5 was higher in the facultative pond (of the three-pond 

system) (81 ±8.6%) than it was for the UASB reactor (48 ±39%), the average removal of TSS was similar in both 

technologies (74 ±19% for the facultative pond and 77 ±18% for the UASB reactor). Based on the standard 

deviations, the facultative pond in this setting has provided a more consistent removal of BOD5 than the UASB 

reactor over the lifespan of the project. While this apparent difference in consistency may be a result of the different 

per capita flow rates (and wastewater strengths) between the two communities, it ultimately does not affect the 

performance of the entire systems. Removal of BOD5 and TSS was quite good in both systems, ranging from 85-

91%. 

Both systems rely on treatment mechanisms that produce methane and carbon dioxide emissions, but only 

the UASB reactor is designed for the collection of biogas, which contains 56 – 77% methane (Muga et al. 2009b). 

On average, 22 kg of COD was removed from the wastewater in the reactor per day. Theoretically, assuming that 

one-fifth of the COD removed from the wastewater is converted to biomass (Mara 2003), and that the remaining 

fraction is converted to biogas, in one day, the UASB reactor would produce biogas with 10 – 13 kg CH4, and an 

equivalent harvestable energy content of 500 – 650 MJ. Measurements from the UASB reactor’s biogas chamber in 
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2009 (Muga et al. 2009a) supports this result and suggests that the harvestable energy content of this reactor may 

even be slightly higher. 

If the energy footprint of wastewater management is a primary concern, wastewater reuse may provide a 

greater energy savings than biogas recovery alone.  For example, one recent study found that water reuse had a 

higher potential for offsetting carbon footprint and embodied energy than on-site energy generation and nutrient 

recycling via land application of biosolids (Mo and Zhang 2012). Eutrophication potential is also an important factor 

for wastewater management in developing countries, and in this study, wastewater reuse would decrease 

eutrophication potential by discharging high nutrient loads directly to land. The UASB-pond system discharges high 

concentrations of total nitrogen (51.8 ±28.1 mg N/L) and phosphorus (9.4 ±4.4 mg P/L) to a receiving water body 

that is a tributary of the Beni River, which is part of the Amazon basin and a local source for fishing. The 

concentrations discharged by the three-pond system are slightly less (34.7 ±14.1 mg N/L and 6.4 ±2.2 mg P/L), but 

are still high. Limited nutrient removal is not uncommon in UASB reactors (Chong et al. 2012) and stabilization 

ponds. For example, in a study of 178 different ponds, Racault et al. (Racault et al. 1995) reported removals of only 

72% and 68% for total Kjeldahl nitrogen (TKN) and total phosphorous (TP), respectively, with 22 mg/L TKN and 

8.5 mg/L TP detected on average in the system effluents. In order for a compliance-based approach to effectively 

manage the discharge of nutrients to receiving waters, communities in developing countries with these existing 

technologies would have to retrofit their systems to add additional nutrient removal components, which would 

require additional financial, complexity, energy, and material inputs.  However, if effluents are applied to land, 

reclaimed nutrients can offset farmer’s costs for fertilizer or may even augment production capacity. In fact, the 

phosphorus in human waste alone accounts for one-fifth of the global demand (Mihelcic et al. 2011).  

Despite the observed difference in effluent concentrations, the mass discharge rate of nutrients per capita in 

the effluent of both systems is not significantly different, and was found to be 3.06 ±1.39 g/capita/day (total 

nitrogen) and 0.50 ±0.22 g/capita/day (total phosphorus). Based on published nutrient application rates and crop 

yields for wheat, maize, and rice in Latin America (FAO 2006), the volume of treated wastewater discharged from 

these systems over a period of six months is estimated to contain the same mass of phosphorus as commercial 

fertilizer that is used to support the production of 9.8 ±3.9 kg of wheat, 18.9 ±7.5 kg of maize, or 14.5 ±5.8 kg of 

rice per person that discharges wastewater to the treatment system. This represents approximately 100 – 400 MJ of 

food energy (Juliano 1993), which is equivalent to 10 – 75 days’ worth of the recommended daily food energy 
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intake for one human (Purves and Sadava 2004). While agricultural yield will certainly vary based on a variety of 

regional and site-specific factors, the calculation shows the potential for integrating urban water infrastructure with 

food security efforts. From a regional management standpoint, it makes little sense to expend additional resources to 

remove nutrients from wastewater so that it may be discharged without impairing receiving waters.  

If pathogens are present in the system effluents, the advantages of nutrient, water, and biogas recovery may 

be countered by public health risks. Assessing the potential health risks from helminth eggs is particularly important 

in these settings due to high incidence rates and because of the fact that the infectious dose is low. The infectious 

dose for helminths can be as low as one egg, and the eggs of some species, such as Ascaris lumbricoides, can 

survive for months or even years in soil, sediments, or sludge (see review in Verbyla 2012).  In addition, 

helminthiasis can impact the nutritional status of children: Ascariasis alone may put as many as 1.5 million children 

under the age of 15 at risk for permanent growth retardation (de Silva et al. 1997).   

The 2006 WHO Guidelines for wastewater reuse (WHO 2006), which are designed for a tolerable 

additional disease burden of 10-6 DALY per person per year, recommend that wastewater used for the irrigation of 

any crop have an average concentration of less than one helminth egg per liter. In this study, Ascaris, Trichuris, and 

Hookworm eggs were not detected in the effluent of the three-pond system, but Ascaris eggs were detected in the 

effluents of the UASB-pond system. Taenia eggs, which have a lower density than Ascaris, Trichuris, or Hookworm 

eggs (Feachem et al. 1983), were detected in the effluents of both systems.  There was a 97% overall reduction of 

helminth eggs in the three-pond system (70% of which happened in the first pond), compared with only 23% overall 

reduction of helminth eggs in the UASB reactor.  Thus, the UASB-pond system appears to be less effective at 

removing helminth eggs than the three-pond system, and reuse of the UASB-pond system effluent for irrigation may 

present higher health risks. Though several recent publications suggest that 10-4 or 10-5 DALYs per person per year 

may be a more appropriate health target for some regions (Mara and Sleigh 2010b; WHO 2007), and because the 

WHO recommendation for helminth eggs is based on a limited number of epidemiological studies, it has been 

suggested that wastewater with average concentrations of greater than one helminth egg per liter may still be 

suitable for reuse (Ensink and van der Hoek 2009). When treatment provides limited removal of pathogens, the 2006 

WHO Guidelines suggest that risks for consumers can be further reduced by implementing non-treatment public 

health interventions in fields and on farms. For example, produce can be washed, rinsed or peeled prior to 

consumption (Amoah et al. 2007) irrigation can also be ceased several weeks prior to harvesting (Keraita et al. 
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2007a), or drip irrigation systems can be used to minimize contamination of edible portions of the crop (Keraita et 

al. 2007b). However, these interventions generally do not provide additional protection for farmers or field workers. 

The results from the Trypan blue staining indicate that helminth eggs detected in the untreated sewage from 

both systems, in the effluent of the UASB reactor, and in the sludge from both systems were more likely to be viable 

than eggs detected in the pond effluents from either system.  Sedimentation is one of the main mechanisms 

responsible for the reduction of parasites in stabilization ponds (Mara 2003), and larger parasites, such as helminth 

eggs, may be removed in UASB reactors by getting captured in the sludge bed (Chong et al. 2012). Therefore, many 

of the parasites that are removed from wastewater will become concentrated in the sludge. Non-viable eggs have a 

lower density than viable eggs, and therefore they may settle at a slower rate or become re-suspended during periods 

of peak flow and advance towards the pond outlet. Similar results were found in a study in Mexico, where sludge 

samples located near the pond outlet had a higher percentage of non-viable eggs than samples located near the pond 

inlet (Nelson et al. 2004). In the present study, sludge samples collected near the inlet of the first pond in the three-

pond system had a higher concentration of helminth eggs than sludge samples from the UASB reactor, and sludge 

samples from both systems had similar percentages of viable eggs. However, stabilization ponds produce less sludge 

per kilogram of organic material removed than UASB reactors (Mara 2003), and the sludge from ponds only needs 

to be removed once every few years. Because operators of UASB reactors must remove sludge every 2 – 4 weeks, 

they have the potential to be exposed to sludge more frequently than operators of stabilization pond systems. 

Therefore, health risks associated with managing biosolids may be greater for a UASB reactor system than they are 

for a stabilization pond system. 

The two systems in this study used technologies that are common in small cities of developing countries 

and can potentially fill part of the infrastructure management gap. The UASB reactor in this study produces 500 – 

650 MJ of biogas energy which can be recovered daily. Both systems discharge effluents with the same mass of 

nutrients as that used in commercial fertilizers to produce food with an energy content equivalent to 10 – 75 days’ 

worth of the recommended daily food energy intake for one human. However, the concentration of pathogens was 

reduced to a lesser extent in the UASB-pond system than in the three-pond system, and helminth eggs detected in 

the effluent of the UASB reactor were more likely to be viable than those detected in stabilization pond effluents. 

While wastewater management systems in large cities and in developed countries may be designed for the removal 

of nutrients and discharge into receiving waters, the technologies used in developing countries do not provide 
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sufficient nutrient removal to do this without impairing receiving waters. The reuse of wastewater nutrients for 

agriculture can offset eutrophication potential and create synergy between sanitation and food security development 

goals. Thus, wastewater management in small cities of developing countries should use technologies that remove 

pathogens so that water and nutrients can be safely reclaimed. Direct energy recovery from biogas may be a priority 

that should be subservient to water and nutrient recovery in these settings. 

 

2.2 Emerging Challenges for Pathogen Control and Resource Recovery in Natural Wastewater Systems2 

The purpose of this section is to address the emerging challenges associated with pathogen control and 

resource recovery in natural wastewater systems. Perspectives from engineering and the social sciences are used 

along with case examples from Bolivia to demonstrate how wastewater management and pathogen control 

objectives must be contextualized. Because natural methods of wastewater management rely on the integration of 

environmental, engineered, economic, and social systems, appropriate pathogen control objectives cannot be based 

on a single approach, and must reflect the broader context of health, integrated water management, and cultural 

perceptions of health and risk, which requires participation from stakeholders in multiple sectors. For the purposes 

of this discussion, natural wastewater treatment systems are divided into the following categories: 1) aquatic systems 

(e.g. WSPs, free water constructed wetlands, and marshes); and 2) subsurface or soil-based systems (e.g. rock filters, 

reed beds, leach fields, and subsurface flow wetlands). The former group consists of systems where wastewater is 

exposed to sunlight; for the systems in the latter group, wastewater is primarily filtered through soil, gravel, plant 

roots, and other subsurface substrates. This can have important implications on both pathogen removal efficiency 

and cultural acceptance of the technology. 

 

2.2.1 Challenges with Pathogen Control in Natural Systems 

2.2.1.1 Mechanisms, Rates, and Indicators of Pathogen Removal in Natural Systems 

Wastewater pathogens comprise a diverse group of disease-causing organisms, including viruses (non-

living infectious agents that utilize host cells to replicate), bacteria (single-celled prokaryotic microorganisms), 

helminth eggs (microscopic infective agents that develop into parasitic worms), and protozoa (single-celled 

                                                           
2 This section contains text extracts, a figure, and a table that are reprinted with permission from: Matthew E. Verbyla, Maryann R. Cairns, Paola 

A. Gonzalez, Linda M. Whiteford, James R. Mihelcic, “Emerging challenges for pathogen control and resource recovery in natural wastewater 
treatment systems,” WIREs Water 2015, Volume 2, Number 6, pages 701 – 714. doi: 10.1002/wat2.1101. Copyright 2015 Wiley Periodicals, 
Inc. Permission is included in Appendix F. 
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heterotrophic and mostly eukaryotic parasites). These different types of pathogens are removed via distinct 

mechanisms at a variety of rates in natural wastewater treatment systems (Table 1). The removal efficiency of 

pathogens in natural wastewater systems can be significantly affected by environmental factors such as temperature, 

sunlight, wind, and rainfall. Table 1 highlights the importance of the different mechanisms and the general range of 

efficiencies that may be achieved in aquatic and subsurface natural wastewater treatment systems. Large variations 

in performance should be expected in natural systems.  

It is currently impractical to monitor the concentrations of all human pathogens in wastewater on a routine 

basis. The common approach thus far has been to use surrogate organisms as a proxy to estimate the removal of 

actual pathogens. Coliform bacteria, thermotolerant coliform bacteria, Escherichia coli, fecal streptococci, and 

enterococci are the most common fecal bacterial indicator groups used in practice today. However, they do not 

necessarily indicate the presence of pathogens and are not necessarily appropriate indicators for pathogen removal in 

aquatic or subsurface natural wastewater treatment systems (García et al. 2010; Maynard et al. 1999). One reason for 

this is that fecal indicator bacteria are often present in wastewater at much higher concentrations than human 

pathogens, and the inactivation of these organisms in natural systems can be more efficient at higher densities than it 

is at lower densities. Another reason is that E. coli, fecal streptococci, and enterococci are generally specific to the 

intestines of warm-blooded animals, but some coliforms are free-living in the environment, and there is evidence 

that E. coli can replicate in the environment (Ishii et al. 2006). Since most natural wastewater systems have long 

retention times and provide habitat for a variety of wildlife (including birds, bats, turtles, and small mammals), fecal 

indicator bacteria from non-human origin (which do not necessarily indicate a threat to human health) may be added 

to the wastewater throughout the system. Microbial source tracking (Harwood et al. 2009) is one technique that can 

help distinguish between animal and human fecal contamination in natural wastewater systems, and thus can provide 

a better understanding about actual microbial risks to humans. 

New technology developments are revolutionizing the field of microbiology, and will soon enable the 

widespread use of alternative indications of pathogen removal in wastewater systems. Methods for monitoring 

pathogens in natural systems should be contingent upon the type of system used (aquatic vs. subsurface), and also on 

the end use of the treated wastewater (e.g. discharge to water bodies, reuse in agriculture, reuse in aquaculture). In 

aquatic natural wastewater systems, helminth eggs are removed mainly via sedimentation (Table 1).  
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Table 1. Mechanisms and general removal efficiencies for different types of pathogens in natural wastewater treatment systems. 

Type of System Microorganism 
Group Removal Mechanisms General Removal Efficiency References 

Aquatic 
Natural Systems  
(Ponds, Lagoons, 

Surface Flow 
Wetlands) 

Bacteria 

• Sunlight disinfection: directly (UV absorption by 
nucleic acids) and indirectly (sunlight absorption 
by photosensitizers, producing reactive species) 

• Predation and natural mortality 
• Sedimentation (after sorption to larger particles) 
• Environmental factors (temperature, pH, NH3) 

Medians [interquartile range] of log10 removal of 
coliform bacteria in stabilization ponds, based on data 
from 186 different ponds, the majority with retention 

times <20 days (von Sperling 2005): 
Primary facultative ponds: 1.8 [1.4 – 2.3] 

Secondary facultative ponds: 1.0 [0.7 – 1.5] 
Maturation ponds: 1.2 [0.5 – 1.7] 

(Crites et al. 2014; von Sperling 
1999, 2002, 2005) 

Viruses,  
bacteriophage 

• Sunlight disinfection: directly (UV absorption by 
nucleic acids) and indirectly (sunlight absorption 
by photosensitizers, producing reactive species) 

• Predation and natural mortality  
• Sedimentation (after sorption to larger particles) 
• Environmental factors (temperature, pH, NH3) 

Ratio of retention time per each log10 reduction in 
virus/bacteriophage concentrations: 

Geometric mean: 14.5 days (95th percentile: 56 days) 
Bacteriophage PRD-1 and coliphage were found to 

survive longer in surface flow wetland sediments than 
they did in the water column 

(Adhikari et al. 2013; Karim et al. 
2004; Sinton et al. 2002; Chapter 3 

of this dissertation) 

Protozoan Parasites  
(mainly Giardia and 

Cryptosporidium) 

• Environmental factors (temperature, pH, NH3) 
• Sunlight disinfection 
• Predation and natural mortality 
• Sedimentation 

Removals reported in the literature vary greatly (from 
<1-log10 reduction in pond with 76 days retention to 1- 

to 2-log10 reduction in pond with 6 days retention). 
Discrepancies in the literature with regard to rate of 
decay in pond/wetland sediments vs. near the water 

surface, and with regard to the importance of 
sedimentation vs. other factors. 

(Karim et al. 2004; Reinoso and 
Bécares 2008; Reinoso et al. 2008a; 

b, 2011) 

Helminth eggs • Primarily sedimentation 

Observed retention time [range] for  
helminth egg removal in ponds: 

1-log10 removal: 3 [2 – 12] days of retention 
2-log10 removal: 9 [5 – 23] days of retention 

3-log10 removal: 18 [7 – 33] days of retention 

(Ayres et al. 1992; Saqqar and 
Pescod 1992) 

Subsurface  
Natural Systems 

(Subsurface 
Wetlands, Rock 

Filters, Reed Beds) 

Bacteria, viruses,  
bacteriophage 

• Adsorption to soil and wetland substratum 
• Environmental factors (temperature, pH, NH3) 
• Predation and natural mortality 
• Sedimentation 

Thermotolerant coliform removal in subsurface 
wetlands typically ranges between 1.25- and 2.5-log10 

units; efficiency of removal by adsorption is not 
necessarily related to hydraulic retention time. 

Bacteriophage removal in subsurface wetlands is 
generally between 0.5- and 2-log10 units; virus survival 

may be prolonged in sediments 

(Adhikari et al. 2013; García et al. 
2010; Gerba et al. 1999; Jackson 
and Jackson 2008; Karim et al. 

2004; Reinoso et al. 2008b; Stevik 
et al. 2004; Vidales et al. 2003; 
Vidales-Contreras et al. 2012; 

Vymazal 2005) 

Parasites  
(protozoan parasites 
and helminth eggs) 

• Sedimentation 
• Physical filtration 
• Predation (especially protozoa) 
• Natural mortality 

Horizontal subsurface wetlands generally provide 
between 0.4- and 3-log10 removal of protozoans 

Helminth egg removal is likely related to wetland or 
rock filter length; a concentration of <1 egg L-1 in 50 m 

reed bed, with 6 days retention. 

(Bastos et al. 2010; García et al. 
2010; Gerba et al. 1999; Karim et 

al. 2004) 
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The mechanisms responsible for the removal of protozoan parasites, viruses and bacteria are more 

complex, and depend on interactions between sunlight, biological, and environmental factors. It has been proposed 

that natural wastewater treatment systems that combine aquatic units with subsurface or soil-based units may 

provide more efficient overall removal of all pathogen types (Gerba et al. 1999). 

 

2.2.1.2 Disease Transmission versus Pathogen Control 

There are fundamental differences between controlling pathogens in a wastewater system and preventing 

the transmission of diseases; the ultimate goal for wastewater management should be to protect the environment and 

prevent disease in ways that are appropriate for the cultural and geographical setting. Disease prevalence and 

exposure to pathogens can vary both seasonally and regionally, and can also be disproportionately classified within a 

community depending on gender, class, and other forms of social stratification (Brown et al. 2011). Wastewater 

management can be thought of in terms of three integrated components: collection, treatment, and reuse or 

disposition. Wastewater collection helps the population avoid direct contact with raw sewage. Wastewater treatment 

helps avoid populations downstream from having direct contact with contaminants in the wastewater. Finally, the 

method of final disposition or reuse of wastewater will dictate who is exposed to contaminants, as well as how much 

they are exposed, how often they are exposed, and to which types of diseases they will be the most vulnerable. The 

effectiveness of wastewater collection and treatment, as well as the methods of final disposition or reuse, all have 

important implications for the distribution and severity of risks presented by wastewater management. This can be 

illustrated by examining the diversity of transmission routes for four different neglected tropical diseases caused by 

wastewater-transmitted helminths. Pathogen removal goals in wastewater management systems should be contingent 

upon the method of final disposition or reuse of wastewater (discharge to water bodies, application to soil, reuse in 

aquaculture) and should consider the diseases that are of concern for the different populations that may be exposed. 

Pathogen removal goals that are appropriate for one region may not necessarily be appropriate for another.  

 

2.2.1.3 World Health Organization Guidelines for Wastewater Reuse 

The risk of disease transmission resulting from exposure to pathogens must be low enough that it is safe 

and acceptable to society, without investing unnecessary financial, material, or energy resources. The determination 

of what level of risk is acceptable, i.e. “safe enough” for all members of society, is a task that should be defined 
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through participative action by community members and stakeholders. Simply recommending a maximum tolerable 

concentration of a single indicator organism, such as thermotolerant coliforms, for all different types of natural 

wastewater systems and all scenarios of wastewater discharge or reuse, may be an oversimplification of this task. 

In 2006, the World Health Organization (WHO) published guidelines for wastewater reuse in agriculture 

(WHO 2006), based on the use of quantitative microbial risk assessment (QMRA). They suggest that pathogen 

concentrations in treated wastewater should be low enough to ensure that no more than 10-6 years of a person’s life 

(on average) are lost due to poor health, disability or early death resulting from wastewater reuse (it was later 

suggested that 10-4 may be a more appropriate goal in communities where the existing disease burden is already high 

(Mara et al. 2010a)). While this is an adequate framework, there is still a great deal of uncertainty associated with 

risk estimates provided by QMRA models. In addition, the cultural perception and understanding of risk from 

wastewater reuse or discharge to the environment may be different from the actual risk, and the perceived or actual 

health risks may be disproportionately distributed amongst members of a society. In order to ensure effective system 

placement and management, it is important to understand that not only the average risk of disease transmission, but 

also the distribution of this risk and the distribution of cultural perceptions about this risk. This requires 

collaborative efforts from professionals with a broad range of disciplines, including public health, engineering, 

microbiology, and the social sciences. 

 

2.2.2 Natural Wastewater Systems and Resource Recovery in Different Contexts 

2.2.2.1 Industrialized Regions 

The infrastructure responsible for water management, food production, and energy is often taken for 

granted in industrialized countries. Because the advanced technologies and engineering associated with this 

infrastructure are often not visible to end users, and its functionality depends on consistent monitoring, upkeep, 

maintenance, and cultural acceptance. In the United States, where approximately half of all wastewater treatment 

facilities used lagoons as part of their treatment process as of the year 2000 (US EPA 2011), it appears that natural 

wastewater treatment systems are gradually being replaced by more mechanized technologies that can reduce the 

concentrations of suspended solids, nutrients (especially ammonia), and fecal indicator bacteria to levels that meet 

increasingly strict permit requirements for discharge to water bodies (Gaston 2014; Morgan 2015; Sharp 2015). The 

reuse of wastewater for land application can eliminate the need to meet stringent nutrient limits. However, in some 
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locations, there are long distances between the source of treated wastewater and areas of agricultural water demand, 

and urban residential irrigation demands also tend to be very dispersed (Leverenz et al. 2011). During the past few 

decades, there has also been a shift in the philosophy of domestic wastewater treatment, which emphasizes energy 

recovery (McCarty et al. 2011); and it has been recognized that the recovery of energy from wastewater can 

potentially offset the direct operational energy costs associated with treatment (Mo and Zhang 2012). 

There are examples of successful wastewater resource recovery in industrialized countries—but there have 

also been failures that are due in part to a lack of consideration for the systems’ impact on societal structures (Guest 

et al. 2009). Public perceptions about the microbial quality of reclaimed wastewater can affect people’s decisions 

and behavior (Wells et al. 2014). While this may be true globally, the few studies in the literature are from 

industrialized countries. For example, the majority of students at one university in the United States showed concern 

about the safety of using reclaimed water, even without specific knowledge about the details of water reuse practices 

in their universities (Vedachalam and Mancl 2010). Another study in Australia found that subjective norms (peer 

pressure), emotion (“ick” factor), and equity (fairness) all significantly and directly affect people’s decisions and 

behaviors related to wastewater reuse (Nancarrow et al. 2008).  

 

2.2.2.2 International Development 

The majority of wastewater systems in less economically-developed countries have only partial treatment 

or no treatment at all (Baum et al. 2013). For the communities in these settings that do have wastewater treatment, 

and in countries with emerging economies that are increasing wastewater treatment coverage rates, natural systems 

are common (Mara 2003). For example, stabilization ponds and constructed wetlands are the most common 

technologies used for wastewater treatment in Bolivia (Ministerio de Medio Ambiente y Agua 2013) and they are 

also the most common systems used in the Dominican Republic, Mexico and Brazil (Noyola et al. 2012).  

In the context of international development, the recovery of resources via water reuse could potentially help 

meet several goals simultaneously (e.g. energy demand, environmental sustainability (Cornejo et al. 2013), hunger 

eradication (e.g., Section 2.1 of this dissertation)). To demonstrate this, information about nutrient imports, total 

nutrient demand, urban sewer coverage, and agricultural water withdrawal was gathered for 52 net food-importing 

developing countries and 49 low-income countries with food deficits (as defined by the United Nations) (FAO 2013, 

2015). Using estimates for the mass of nutrients in human waste (Strauss et al. 2003), and data about urban sewer 



www.manaraa.com

26 

coverage (FAO 2015), it is clear that wastewater generated in these resource-challenged countries contains a 

considerable percentage of the nutrients and water that are respectively imported (as fertilizers) and withdrawn (as 

freshwater) for agricultural activities (Figure 5). On average, in these countries with food deficits and net food 

imports, the estimated amount of nitrogen in wastewater is between 10 and 15% of the total mass of nitrogen 

imported, and the amount of water the can be reclaimed accounts for ~5% of the water withdrawn for agriculture. 

However, in countries like Bolivia, where natural systems comprise the majority of all wastewater treatment plants 

(Ministerio de Medio Ambiente y Agua 2013), wastewater reuse can potentially offset the freshwater extracted and 

nutrients imported for agricultural production. Water also has an economic value—in the southern periurban district 

of Cochabamba, Bolivia, some residents pay up to US$5.00 per cubic meter of freshwater, and others use 

wastewater from a stabilization pond system to irrigate crops (authors’ own experience). In summary, if 

implemented appropriately, natural wastewater systems with agricultural water reuse can assist countries that are 

seeking to improve economic, food production, and resource outcomes.  

 
Figure 5. Ratio of the estimated quantity of nutrients and water in existing sewer systems compared to overall 
nutrient imports and agricultural water withdrawal in food-importing developing countries (dark gray) and 
low-income countries with food deficits (light gray), with Bolivia (black) as a case study. 

The use of advanced anaerobic reactors (e.g. upflow anaerobic sludge blanket reactors) is rapidly being 

adopted globally, especially in tropical countries (Lettinga 2010). For reasons that are uncertain, in Bolivia, we have 

observed that systems with anaerobic reactors are being selected over (and sometimes replacing) natural wastewater 

systems, even in locations where agricultural wastewater reuse is common and large areas of flat land are available 

for the implementation of natural systems. The advanced anaerobic reactors may be viewed by some stakeholders as 

more “modern” technologies (Gamboa 2010), while natural systems may be considered by some to be “outdated” 
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(Ryan Shachoy and Moore 2013). Advanced anaerobic reactor technologies can improve energy recovery from the 

wastewater treatment process. However, some systems with advanced anaerobic reactors may be inherently less 

efficient at eliminating pathogens (Oliveira and von Sperling 2011). It is almost always necessary to use some sort 

of post-treatment after advanced anaerobic reactors to achieve additional pathogen removal. This post-treatment can 

be (and often is) provided by natural wastewater treatment systems. In communities with appropriate resources and 

technical support, the use of advanced anaerobic reactors in conjunction with natural wastewater treatment 

technologies can provide important benefits over natural treatment systems by themselves, by saving land space and 

allowing for the recovery of biogas. However, if biogas is not reused or flared, the methane emissions from 

advanced anaerobic reactors can contribute even greater greenhouse gas emissions according to a recent study 

(Bruun et al. 2014).  

 

2.2.3 Addressing Cultural Perceptions of Pathogens and Risk 

The efficacy of natural wastewater systems at removing pathogens is contingent on individuals’ and 

communities’ ability to keep these systems operating, the amount of capacity building that governing bodies provide 

to local communities who may manage these systems, and the extent to which individual behaviors and 

understandings related to health risk are in line with the technological abilities. Risk, therefore, can be as inherently 

cultural as it is biological. Individual choices about hand washing, irrigation practices, sanitation, water reuse, and 

the use of chemical disinfection methods will thus be as integral as the effectiveness of technology in reducing risk, 

and furthermore, these behaviors can be managed. In addition, governmental and non-governmental organizations 

can teach stakeholders new behaviors via informational campaigns and outreach materials, increase local interest in 

wastewater technologies, and encourage adoption of new practices through economic or social motivations. 

However, unless there is widespread adoption of these new techniques, in conjunction with attention to wider issues 

of sustainability (Shomar and Dare 2014), the efficacy of a wastewater management system that employs resource 

recovery on reducing health risks may be widely variable.  

Public perceptions about the safety of effluent from a natural wastewater systems are multifaceted, and may 

vary widely between stakeholder groups (Wells et al. 2014). Furthermore, the benefits and risks resulting from 

reusing water from these systems can often be influenced by factors such as gender, class, and social status (see 

Chapter 5 of this dissertation). Marginalized and vulnerable groups in a society may feel they cannot trust authorities 
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and may also lack information about their organizations or affiliations (Sano 2000), which can undermine their 

willingness to adopt practices and policies implemented by agencies and governments. It is necessary to understand 

how infrastructure relates to human health and well-being, and especially how wastewater treatment infrastructure 

impacts communities’ health when it is managed unsuccessfully.  As water shortages and the contamination of water 

bodies continues, these relationships will become more relevant (Libralato et al. 2012).  

  

2.2.4 Conclusion 

The efficacy of wastewater management using natural methods relies on the integration of environmental, 

engineered, economic, and social systems. Because of this, the most effective form of pathogen control and 

monitoring cannot be dictated by a single approach (e.g. a single limit for the maximum tolerable concentration of 

faecal indicator bacteria). Natural systems that employ a combination of aquatic and subsurface units may provide 

better overall removal of different types of pathogens, but the overall context of the system and its final method of 

wastewater disposition are important, as certain diseases are of greater concern in some regions than they are in 

others. As such, wastewater system technology choice, methods of final disposition or reuse of treated wastewater, 

and resulting pathogen removal objectives have to be contextualized technically and socio-politically for each 

particular application. Because of this, partnerships across sectors for science, technology and innovation are an 

essential part of the solution to challenges related to pathogen control in natural wastewater treatment and resource 

recovery systems, and the management of these resources at the nexus of water, energy, and food security. In order 

to develop sustainable approaches to wastewater management that have synergy with renewable energy, food 

security, and public health protection goals, the following partnerships are crucial: 1) academic partnerships between 

experts from the natural sciences, engineering, health, and the social sciences to develop new solutions to 

wastewater management; and 2) broad participation between professional and community stakeholders from the 

water, sanitation, health, agriculture, and energy sectors. While fostering these relationships and partnerships will 

take time, energy and funding, the reality of water pollution and the need to safely recover resources from 

wastewater will make these efforts imperative.   
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3 A REVIEW OF VIRUS REMOVAL IN WASTE STABILIZATION POND SYSTEMS3 

3.1 Introduction 

Waste stabilization ponds (WSPs), also known as lagoons, are one of the oldest and most prevalent types of 

systems used to treat domestic wastewater in the world. More than half of the wastewater treatment facilities in the 

United States and in New Zealand utilize ponds (US EPA 2011; Mara 2003). They are also the most common 

technology used to treat domestic wastewater in Mexico, the Dominican Republic, and Brazil (Noyola et al. 2012). 

In France, there are approximately 2,500 WSP systems (Mara and Pearson 1998), and in Colombia, there are 

approximately 100 WSP systems (Miguel Peña Varón, personal communication). The low cost and simplicity of 

their construction, operation, and maintenance has caused them to be considered one of the most important 

wastewater treatment technologies, especially for small cities and towns, and in particular when the effluent is land-

applied (Mara 2003; Oakley 2005b; Peña Varon et al. 2000). In fact, the land application of WSP system effluent 

can reduce the eutrophication potential, embodied energy, and carbon footprint of wastewater management over the 

life cycle (Cornejo et al. 2013); but pathogen removal for safe nutrient recovery from these systems may be an 

increasingly important priority for some small cities and towns (see Chapter 2). The removal of fecal indicator 

bacteria in WSP systems has been well-documented (von Sperling 2005), but it is not a good indicator for virus 

removal (Maynard et al. 1999). 

Viruses are intracellular parasites with a genome contained inside a protein capsid. They can be divided 

into groups according to their genome type: double-stranded DNA (dsDNA), single-stranded DNA (ssDNA), 

double-stranded RNA (dsRNA), and single-stranded RNA (ssRNA) (Flint et al. 2009). Of more than 100 known 

species of viruses that are excreted in human waste (Bosch 1998), some are particularly resistant to wastewater 

treatment. Symonds et al. (2009) detected adenoviruses, enteroviruses, noroviruses, and picobirnaviruses in treated 

wastewater from 12 different cities throughout the United States. Though they are not necessarily specific markers 

of human waste (Harwood et al. 2013), bacteriophages (viruses that infect bacteria) have been used as surrogates to 

                                                           
3 Reprinted from Water Research, Volume 71, Matthew E. Verbyla and James R. Mihelcic, “A review of virus removal in wastewater treatment 

pond systems.” Pages 107 – 124. Copyright 2014, with permission from Elsevier. Permission is included in Appendix F. 
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study enteric virus removal in WSP systems (Castillo and Trumper 1991; Omura et al. 1985). Pepper mild mottle 

virus, a plant pathogen of dietary origin, has been recently proposed as a surrogate for enteric viruses (Rosario et al. 

2009), but its application to the study of WSPs has been limited to one publication (Chapter 4 of this dissertation). 

The efficiency of virus removal in WSPs with respect to theoretical hydraulic retention time (HRT) has 

been widely debated in the literature, with different authors often reaching contradictory conclusions over the past 

40 years (Figure 6). In one early review, virus removal in WSPs was described as being “erratic” (Berg 1973). In 

another report (Feachem et al. 1983), it was concluded that WSP systems with temperatures exceeding 25°C were 

capable of reducing enteric virus levels by 1- to 2-log10 units for every five days of retention, implying that 30-day 

pond systems would achieve at least 6-log10 virus reduction. This report also partially attributed virus removal in 

WSPs to their adsorption to solid particles and subsequent settling. Shuval et al. (1986; 1990) reported that virus 

removal in a 20-day pond system with temperatures above 20°C would be as high as 2- to 4-log10 units, a statement 

which was more recently cited by Drechsel et al. (2010). Maynard et al. (1999) indicated that virus removal rates in 

tertiary (maturation) ponds appeared erratic, and that overall removal in pond systems was generally <1 log10-unit. 

 
Figure 6. Chronological evolution of conclusions made about virus removal in waste stabilization ponds. 
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Previous reviews of pathogen removal in WSPs (Davies-Colley et al. 2000) and of the overall performance 

of maturation ponds (Maynard et al. 1999) have acknowledged that the mechanisms responsible for the removal of 

viruses in WSP systems are complex and rely upon interactions between physical, chemical, and biological 

characteristics of the pond water. However, as virus removal was not the primary focus of these previous review 

articles, the authors did not analyze results from a large number of field studies.  

Given the widespread global use of WSP systems and their potential for integration with wastewater 

resource recovery, the purpose of this chapter is to critically review the major findings related to virus removal in 

WSP systems, and to statistically analyze results reported in the literature from field studies on virus removal in 

WSP systems. The literature describing phage removal in WSP systems is also reviewed, and statistical analyses are 

provided separately for phages and enteric viruses. It is important to note that authors from many of the studies 

included in this review have used bacteriophages as surrogates for enteric viruses in WSP systems. In particular, 

coliphages and phages infecting Bacteroides fragilis have been proposed as surrogates for studying enteric viruses in 

water, due to the fact that they have fundamental similarities with enteric viruses (e.g. structure, morphology, size), 

they are often found in greater concentrations than enteric viruses in water environments, and they mainly replicate 

inside the human gastrointestinal system (Grabow 2001). Nevertheless, the use of phages as surrogates for enteric 

viruses in WSP systems also has some important limitations. Until recently, methods used to measure concentrations 

of phages in water samples were not internationally-standardized; different authors have used a variety of different 

host cells and methods. Another limitation is that unlike enteric viruses, coliphages can be excreted by animals; and 

with the exception of F+ RNA coliphages, most coliphages have low specificity for human feces (Harwood et al. 

2013). Somatic coliphages in particular represent a wide range of phages with different properties (Grabow 2001). 

While the primary focus of this review is on human enteric viruses and their surrogates, it should be noted that some 

enteric viruses may be capable of cross-infection between animals and humans (e.g. hepatitis E (Meng 2011)). RNA 

viruses in particular have a high potential for genetic mutations (Rosenberg 2014), and some have been known to 

jump between bird, human and other mammal hosts, creating emerging zoonotic viral diseases. It may be important 

to consider the influence of such zoonotic viruses in WSP systems; however, no information was found in the 

literature about this phenomenon as it relates to WSPs.  

The following pond types are considered in this review: anaerobic, facultative, maturation, polishing, and 

surface-aerated ponds. Polishing ponds are defined here as ponds treating the effluent of any other type of 
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wastewater treatment system. The chapter is organized as follows: in Section 3.2, the mechanisms responsible for 

virus removal in WSPs are reviewed, with a particular focus on contributions that have been made over the past 

fifteen years. Section 3.3 provides an overview of some techniques that are used for additional disinfection of the 

effluent of some WSP systems. Section 3.4 includes a review of the interactions between viruses and particles in 

WSPs, and the potential impact that these interactions may have on virus removal. The influence of pond hydraulics 

on virus removal in WSPs is briefly discussed in Section 3.5. Section 3.6 includes a comprehensive review and 

statistical analysis of virus or bacteriophage removal reported from field studies of pilot- and full-scale WSP 

systems, pulling information from 48 different publications. Finally, Section 3.7 concludes by assessing the 

implications of the current state of knowledge, and identifying future needs for research and technology 

development. 

 

3.2 Mechanisms for Virus Removal in Waste Stabilization Ponds 

In many WSP systems, virus removal is achieved solely by natural mechanisms such as sedimentation 

(following the association of viruses with larger particles), predation by organisms of higher trophic levels, and 

sunlight-mediated inactivation mechanisms (Mara 2003). High temperatures and pH extremes alone can also 

inactivate viruses by denaturing their proteins and nucleic acids, however the effect of temperature and pH in WSP 

systems is more important for its interaction with other environmental factors which affect the efficiency of sunlight 

disinfection (Romero et al. 2011). Fecal coliforms (such as E. coli) are poor indicators for the removal of enteric 

viruses in WSPs (Maynard et al. 1999). 

 

3.2.1 Adsorption to Solids and Sedimentation 

Viruses are too small to settle by themselves in WSPs, but they may be removed via sedimentation if they 

associate with larger, settleable solids. Section 3.4 contains a more detailed review of the mechanisms responsible 

for virus-particle interactions. In older reports, virus adsorption to solids and removal by sedimentation was thought 

to be an important virus removal mechanism in WSPs (Feachem et al. 1983; Shuval 1990), however there is limited 

evidence that this is actually true. In early studies, the reversible adsorption of coliphage to algae in WSP water was 

reported under aerated conditions (with desorption under anaerobic conditions) (Ohgaki et al. 1986); poliovirus type 

1 exhibited reversible adsorption to suspended WSP solids, conforming to a Freundlich isotherm model (Sobsey and 
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Cooper 1973). However, in these studies, high-speed centrifugation was used to separate particle-associated viruses; 

this is not necessarily an indication that the viruses would settle by gravity in a full-scale WSP system. Lijklema et 

al. (1986) found that bacteriophages in combined sewer overflow detention ponds were less likely to settle with 

particles than fecal indicator bacteria. In laboratory experiments with filtered (2.7 μm pore size) and unfiltered 

untreated sewage, facultative pond water, and maturation pond water, Frederick and Lloyd (1995) reported no 

significant removal of Serratia marcescens phage that could be attributed to adsorption to solids and sedimentation. 

Vorkas and Lloyd (2000) found that the phages of S. marcescens, Erwinia ananas, and Erwinia amylovora survived 

for a few days longer in filtered WSP water than they did in unfiltered WSP water. They suggested this difference 

might be due to phage adsorption to solids and subsequent sedimentation; however, they did not confirm the 

presence of the phages in the reactor sediment. Furthermore, their reactors were exposed to sunlight, so the shorter 

survival of viruses in unfiltered samples may have been due to the presence of algae which caused a rise in the pH 

and dissolved oxygen levels, potentially resulting in more efficient sunlight-mediated inactivation. In two recent 

studies, it was demonstrated that only a very small percentage of human norovirus (genotypes I and II) and human 

rotavirus (group A) in WSP samples were retained on 180-μm filters, implying that sedimentation of these viruses is 

not likely a dominant mechanism for their removal in WSP systems (da Silva et al. 2008; also Section 4.2 of this 

dissertation). 

 

3.2.2 Predation by Organisms of Higher Trophic Levels 

Virus predation in WSPs has not been extensively studied, and is poorly understood. The mechanisms 

driving virus internalization by higher trophic-level organisms (and the resulting protective or detrimental impact on 

virus viability) are likely complex. In one eutrophic freshwater reservoir in Japan, it was found that heterotrophic 

nanoflagellates consumed virus-like particles, decreasing their abundance in water (Manage et al. 2002), but in 

another eutrophic lake in France, less than 1% of virus-like particles were reportedly grazed by heterotrophic 

nanoflagellates (Bettarel et al. 2005). In one coastal system, viruses accounted for < 5% of all heterotrophic 

nanoflagellate predation (bacteria are the preferred target) (Miki and Jacquet 2008). The internalization of enteric 

viruses by free-living protozoa has been documented both in vitro (Danes and Cerva 1981) and in vivo (Danes and 

Cerva 1984). This internalization may actually protect viruses from inactivation, acting as vectors for their 

transmission and dispersal through water sources (Scheid and Schwarzenberger 2012). Alternatively, if these larger 
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organisms die or lose their motility, they may settle to the bottom of a pond, carrying the internalized viruses with 

them. A recent field study demonstrated that human adenovirus can be taken up and internalized by ciliates in 

wastewater, where it can persist for up to 35 days (Battistini et al. 2013); however, the authors were not able to 

determine the infectivity of the internalized viruses. Human adenovirus genome targets were also detected on 180-

μm filters in samples from a maturation pond where water mites were also trapped in large quantities on the filters 

(see Section 4.3). More research is needed to better understand the effect of virus predation in WSPs, in particular to 

understand if the association of enteric viruses with higher trophic-level organisms in WSPs plays a significant role 

in virus removal or assists with virus sedimentation. 

 

3.2.3 Sunlight-Mediated Inactivation 

There are three different sunlight-mediated mechanisms that can contribute to virus inactivation in WSPs: 

direct inactivation, indirect endogenous inactivation, and indirect exogenous inactivation (Jagger 1985). The direct 

mechanism involves the absorption of photons by the virus, resulting in damage to the genome or capsid proteins. 

The indirect mechanisms involve the reaction of photons with sensitizer molecules, resulting in the formation of 

reactive intermediates or radicals that damage the virus. The mechanism is endogenous when the sensitizer 

molecules are part of the virus itself, and exogenous when the sensitizers are other molecules in the water column. 

The strength of radiation, the optical and physicochemical characteristics of pond water, and the properties of the 

particular virus species in question are all factors that influence the efficiency of sunlight-mediated inactivation 

mechanisms. Seasonal fluctuations in solar radiation may have important implications for WSP systems located in 

high-latitude regions. Radiation with wavelengths in the UVC (100-280 nm) and UVB (280-315 nm) ranges are the 

most efficient for direct inactivation, while wavelengths in the UVA (315-400 nm) and visible (400-500 nm) ranges 

can also contribute significantly to the indirect mechanism (Jagger 1985). Practically all of the UVC radiation 

produced by the sun is absorbed by the Earth’s atmosphere, and only a small percentage of UVB radiation reaches 

the Earth’s surface.  

In a recent study of solar water disinfection, McGuigan et al. (2012) reviewed the literature on virus 

inactivation resulting from sunlight exposure, but did not report or calculate the corresponding S90 values (fluence 

required to achieve 90% inactivation). The S90 metric, which is analogous to the Ct (concentration × time) metric 

used for chemical disinfectants (Davies et al. 2009), provides a more useful comparison of the relative vulnerability 
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to sunlight-mediated inactivation for different types of viruses, since solar intensity can vary from region to region. 

Therefore, in order to make such a comparison, the S90 values for DNA and RNA viruses were collected from the 

studies referenced by McGuigan et al. (2012) (Dejung et al. 2007; Fisher et al. 2012; Harding and Schwab 2012; 

Heaselgrave et al. 2006; Rijal and Fujioka 2003; Safapour and Metcalf 1999; Sinton et al. 2002; Wegelin et al. 

1994), and from several other studies of virus survival in water, wastewater or WSP water after sunlight exposure 

(Carey Walker et al. 2004; Davies et al. 2009; Davies-Colley et al. 1997, 2000; Fisher et al. 2011; Kapuscinski and 

Mitchell 1983; Love et al. 2010; Sinton et al. 1999). If S90 values were not provided by the authors, they were 

calculated (see Appendix A).  

The resulting S90 values vary considerably with respect to virus type (even within viruses of the same 

family), water type, and experimental conditions (Figure 7). Laboratory strains of dsDNA and ssRNA viruses may 

not respond the same to sunlight as viruses in the environment; the S90 values for laboratory virus strains are 

significantly lower than the S90 values of their wild-strain counterparts (p < 0.01). The rate of sunlight-mediated 

virus inactivation in untreated sewage and WSP water also appears to be lower than the corresponding rate in 

phosphate-buffered saline (PBS). For example, the S90 value for wild-strain F+ RNA phage in PBS (based on data 

reported by Love et al. (2010)) is lower than the S90 values reported by Davies-Colley et al. (1997) and Sinton et al. 

(2002) for the same type of phage in untreated sewage and WSP water. This may be due to the fact that sunlight is 

much more rapidly attenuated in untreated sewage and WSP water than it is in PBS. Sunlight radiation decreases by 

an order of magnitude in the first 35 cm of a WSP, while the UV portion is attenuated within the first 10 cm 

(Davies-Colley et al. 2005a).  

Data from most of the studies summarized in Figure 7 are for coliphage or animal viruses; the experiments 

done with human enteric viruses are all laboratory strains. Because of the limitations associated with the use of 

laboratory strains and enteric virus surrogates, inactivation rates for wild strains of actual enteric viruses may be 

different. Nevertheless, the results summarized in Figure 7 provide a general idea about the order of magnitude 

efficiency of solar disinfection. For example, most S90 values ranged between 1 and 10 MJ m-2. For the most 

resistant groups of viruses (ssRNA and dsDNA), the time required for 90% inactivation (T90) approach 50 hours, 

which is close to the mean HRT of some WSPs.  
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Figure 7. Summary of S90 and T90 values from solar disinfection studies of RNA and DNA viruses. 
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3.2.3.1 Direct Sunlight Inactivation 

The most effective wavelength for direct light-mediated virus inactivation mechanism is ~260 nm (Jagger 

1985). However, sunlight emitted at this wavelength does not reach the Earth’s surface. Light in the UVB and UVA 

range can also directly inactivate viruses, but efficiency decreases with increasing wavelengths (Lytle and Sagripanti 

2005). Due to the rapid attenuation of UV radiation in WSP water, direct sunlight inactivation likely only occurs at 

the pond surface.  

Virus genome type influences the efficiency of direct sunlight-mediated inactivation. One of the most 

common virus genome deformations that results from the absorbance of photons is the formation of pyrimidine 

dimers (especially thymine dimers), which can prevent replication (Jagger 1985). Since RNA does not contain 

thymine, RNA viruses are typically more resistant to direct light-mediated inactivation than DNA viruses (Lytle and 

Sagripanti 2005). This has been demonstrated in laboratory experiments. For example, Davies-Colley et al. (1999) 

found that F+ RNA phage solar inactivation kinetics were strongly dependent on the concentration of dissolved 

oxygen and the presence of light-absorbing constituents in the water (inactivation likely dominated by indirect 

mechanisms), while the kinetics of F+ DNA phage inactivation were independent of these variables (inactivation 

likely dominated by the direct mechanism).  

Genome size may also affect the vulnerability of viruses to direct sunlight-mediated inactivation. Lytle and 

Sagripanti (2005) reported that viruses with larger genomes are more susceptible to UV damage than viruses with 

smaller genomes. In fact, when they normalized virus inactivation rates at UV wavelengths of 254 nm (UV254) to the 

size of the virus genomes, they found that the size-normalized sensitivities to UV254 were within the same order of 

magnitude for viruses with the same genome types (ssDNA, dsDNA, ssRNA, or dsRNA). After normalizing for 

genome size, dsDNA viruses are the most resistant of all to direct sunlight inactivation, followed by dsRNA viruses, 

ssRNA viruses, and ssDNA viruses, in that order (Lytle and Sagripanti 2005). Romero et al. (2011) also found 

evidence that genome size affects the vulnerability of RNA viruses to direct sunlight inactivation. They reported that 

porcine rotavirus was inactivated more quickly than MS2 coliphage under full sunlight, while the opposite was true 

when the UVB portion of the sunlight was screened. While this implies that porcine rotavirus (dsRNA) is more 

vulnerable to direct sunlight inactivation than MS2 coliphage (ssRNA), the size of the rotavirus genome is nearly 

five times the size of the MS2 genome (Michen and Graule 2010). 

 



www.manaraa.com

38 

3.2.3.2 Indirect Sunlight Inactivation 

Indirect sunlight inactivation of viruses in WSPs results from the absorbance of photons by sensitizer 

molecules that are endogenous (part of the virion) or exogenous (in solution) (Jagger 1985). The subsequent energy 

transfer to dissolved oxygen forms oxidants that can damage nucleic acids or proteins (Bosshard et al. 2013). 

Endogenous virus photosensitizers may include amino acid chromophores in the proteins of virus capsids (e.g. 

histidine, tyrosine, phenylalanine, cysteine, tryptophan) (Davies 2003; Kohn and Nelson 2007). Tryptophan exhibits 

the highest absorbance of solar UV, however it is not present in high quantities in virus proteins, therefore, 

endogenous sunlight-mediated inactivation of viruses is essentially negligible (Mattle et al. 2015). Common 

exogenous photosensitizers in WSPs include dissolved natural organic matter (NOM) and algal particulates (Davies-

Colley et al. 1999; Kohn and Nelson 2007). Pseudo-first-order kinetic models are generally used to model overall 

solar virus inactivation with respect to time, but the rate of exogenous sunlight-mediated virus inactivation follows 

second-order kinetics (Kohn and Nelson 2007; Mattle et al. 2015). The concentration of dissolved oxygen and the 

extent of light penetration in WSP water are important factors for indirect sunlight inactivation mechanisms. 

Sunlight may penetrate deeper into maturation ponds than it will in more turbid facultative and anaerobic ponds. The 

concentration of dissolved oxygen is also highest in maturation ponds, followed by facultative ponds, then anaerobic 

ponds.  

The rate of indirect exogenous inactivation in WSP water has been particularly well-characterized for MS2 

coliphage (ssRNA), human adenovirus (dsDNA), and PhiX-174 phage (dsDNA), with MS2 being the most 

susceptible to indirect sunlight inactivation, followed by adenovirus and then PhiX-174 (Kohn and Nelson 2007; 

Kohn et al. 2007; Mattle et al. 2015; Romero et al. 2011). Based on data reported in the literature (Kohn and Nelson 

2007; Romero et al. 2011), the S90 values under sunlight exposure for MS2 in WSP water and in NaHCO3 buffer 

(with 10 mg C L-1) are estimated to be 4.1 MJ m-2 and 0.9 MJ m-2, respectively. When the UV portion of the sunlight 

is blocked, the S90 values increase to 7.9 and 6.1 MJ m-2, respectively. These results imply that the rate of solar 

inactivation for MS2 coliphage by the indirect exogenous mechanism is slightly less efficient than its rate of 

inactivation by the direct mechanism under sunlight. The rate of indirect sunlight inactivation for MS2 is more 

efficient with higher temperatures (Romero et al. 2011) and higher total organic carbon (TOC) concentrations (Kohn 

et al. 2007). It also increases when the phage is located in closer physical proximity to reactive species (and 

presumably in closer physical proximity to photosensitizer particles in WSPs). Other factors that can affect the rate 
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of indirect sunlight inactivation are pond water characteristics (e.g. hardness) and the types of algal species present 

(Kohn et al. 2007).  

Not all enteric viruses are as vulnerable to indirect sunlight inactivation as MS2 coliphage. Bosshard et al. 

(2013) demonstrated that the exposure of human adenovirus to sunlight (without the UVB portion) in the presence 

of a photosensitizer caused damage to fiber and hexon proteins, which are necessary for host cell binding and virus 

infectivity. However, adenovirus is still more resistant to indirect sunlight inactivation than MS2 coliphage (Mattle 

et al. 2015). Rotavirus is likely even more resistant. Romero et al. (20110) found that exogenous sunlight 

inactivation does not significantly contribute to the inactivation of porcine rotavirus, even in the presence of 20 mg 

C/L of Suwannee River NOM (Romero et al. 2011).  

In summary, the mechanisms that contribute to sunlight-mediated virus inactivation in WSPs are dependent 

on the strength of solar radiation, the optical and physicochemical characteristics of WSP water, and the properties 

of the virus (e.g. genome type and size, and the vulnerability of capsid proteins and the virus genome to reactive 

species). 

 

3.3 Disinfection of Waste Stabilization Pond System Effluent 

The effluent of WSP systems can also be disinfected using a variety of different processes, such as 

chlorination, ultraviolet (UV) lamps, and tertiary treatment processes (e.g. rock filters, constructed wetlands). Ozone 

and peracetic acid are also used to disinfect wastewater, but no information was found for this review regarding the 

effectiveness of these disinfectants for viruses in WSP systems. 

Chlorination is one approach that is used for the disinfection of treated wastewater from some WSP 

systems. Indeed, several states in the U.S. issue discharge permits that require WSP system operators to chlorinate 

effluent prior to discharge or reuse (US EPA 2011). Residual chlorine should not be discharged to rivers, so WSP 

systems with chlorination processes also include dechlorination. In New Zealand, the chlorination of WSP system 

effluent had been common practice in the past, but is no longer used due to concerns with the formation of 

chlorinated organic compounds, and because of its higher cost compared to the use of UV lamps (New Zealand 

Ministry for the Environment 2005). The European Union’s Wastewater Treatment Directive 91/271/EEC does not 

specifically require chlorination of treated wastewater (European Union 1991), and chlorination of WSP system 

effluent does not appear to be common practice in most European countries.  
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There are a number of challenges associated with chlorinating WSP system effluent. High concentrations of 

algae, suspended solids, and sulfide in ponds increase chlorine demand, requiring chlorine doses as high as 20 to 30 

mg/L in some systems (White and Clifford 1974). The relationship between algae concentrations and the 

effectiveness of chlorine-induced coliform inactivation has been shown to be inversely proportional (Polprasert and 

Rajput 1984), but no literature was identified about the effect of algae concentrations on the chlorine-induced 

inactivation of viruses. In one study, the chlorination of WSP system effluents decreased coliforms by five orders of 

magnitude, but the concentration of enteroviruses decreased by only 37% (Kott 1973).  

The chlorination of WSP effluent may have some operational advantages, such as the reduction of 

suspended solids (US EPA 1983). There are also financial, safety, environmental and public health tradeoffs. Low 

doses of free chlorine can oxidize suspended particles, increasing the concentration of soluble COD (Johnson et al. 

1978). Higher doses kill algal biomass, causing the release of nutrients in addition to the increase in BOD5 and COD 

(Echelberger et al. 1971). High levels of dissolved organic matter and ammonia in WSP system effluent may also 

lead to the production of toxic chloramines (US EPA 1983).  

The use of commercial UV disinfection lamps is the most common form of disinfecting the effluent of 

WSP systems in New Zealand (New Zealand Ministry for the Environment 2005). However, the efficiency of virus 

inactivation by UV lamps is contingent on the transmittance of radiation (typically at 254 nm) through the water 

column, which may present challenges. Bio-fouling of UV lamps can be caused by algae and other suspended solids 

(Malley, Jr. and Burris 2001), and may contribute to the shielding of viruses from harmful UV radiation. In New 

Zealand, rock filters and rock groynes are commonly used with WSP systems (New Zealand Ministry for the 

Environment 2005) to remove suspended solids. They may also help control bio-fouling on UV lamps. Apart from 

the works reviewed about direct UV inactivation (Section 2.3.1), no other literature was found that specifically 

addresses virus inactivation in WSP systems using UV lamps. 

The use of additional unit processes for tertiary treatment and disinfection, such as constructed wetlands  

(Kivaisi 2001) and rock or plant filters (Mara and Johnson 2007), has been proposed as an effective way to upgrade 

WSP system effluent and achieve additional pathogen reduction. Submerged constructed wetland systems, plant 

filters, or reed bed systems can reduce coliphage and culturable enterovirus levels in wastewater by 2 or more log10 

units(Williams et al. 1995). Rock filters can also be added to the end of WSP systems, to polish pond effluents and 

provide additional virus removal. Alcalde et al. (2003) reported a 1.7 log10 reduction in F-specific bacteriophage in 
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rock filters treating effluent from a WSP system in Israel during the summer, but less than 0.5-log10 removal was 

reported in the winter; lower reductions of somatic coliphage were reported.  

The mechanisms for virus removal in free-water surface constructed wetlands will be similar to those that 

occur in maturation ponds. The main difference between the two is that in constructed wetlands, emergent 

macrophytes may block sunlight from reaching the water, potentially decreasing the efficiency of sunlight-mediated 

inactivation mechanisms. However, the root zone of these plants may also provide a site for attached biomass 

growth, which can potentially assist with the removal of viruses (Jackson and Jackson 2008). Mara (2006) argued 

that constructed wetlands do not necessarily provide an added benefit as an addition to WSP systems because they 

generally require the same amount of land area as additional maturation ponds. Nevertheless, constructed wetlands 

with emergent plants may have other environmental and social advantages, such as nutrient uptake and the 

restoration of wildlife habitats (Muga and Mihelcic 2008).  

New technological developments in constructed wetlands systems may enable improved virus removal 

efficiencies. Modular wetland treatment units designed to naturally select for the growth of periphyton species are 

currently being developed with the objective to optimize the removal of pathogens (Nelson et al. 2013) and 

emerging trace contaminants (Jasper et al. 2013). These units, which naturally select for periphyton species that 

grow close to the bottom of the water profile, allow for greater sunlight penetration, which increases the efficiency 

of virus inactivation. 

 

3.4 Virus-Particle Interactions 

Viruses in WSPs may be enmeshed within bio-flocs or adsorbed to suspended particles such as NOM, 

algae, bacteria, colloidal materials, and biological or chemical flocs (Templeton et al. 2008). The association with 

particles as small as 7 μm can shield viruses from UV exposure and reduce their vulnerability to direct sunlight 

inactivation (Templeton et al. 2005); however, the association of MS2 coliphage with NOM may actually enhance 

its vulnerability to indirect sunlight inactivation (Kohn et al. 2007). Adsorption of viruses to a surface is dependent 

on the characteristics of the virus, the surface, and the surrounding environment (Gerba 1984). Bacteriophages 

(especially MS2 coliphage) have been used previously as surrogates for enteric viruses in particle-association 

studies (e.g. Dika et al. 2011; Templeton et al. 2005). One important difference between the adsorption of 
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bacteriophages and enteric viruses in WSP systems is that phages adsorbed to bio-aggregates containing their 

bacterial host can multiply, while enteric viruses cannot multiply outside of the human host.  

If viruses become associated with larger particles in wastewater treatment ponds, they may be removed via 

sedimentation. Authors from earlier publications have reported that virus-particle association and sedimentation is 

one of the main mechanisms responsible for virus removal in WSPs (Feachem et al. 1983; Mara 2003; Shuval 

1990). However, there is limited evidence in the literature to support this theory.  

 

3.4.1 Theoretical Considerations for Virus-Particle Interactions 

Mechanisms driving virus-particle interactions in water are governed in part by the principles of extended 

Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, which considers van der Waals forces, electrostatic double 

layer forces, hydrophobic interactions (Wong et al. 2012), and osmotic interactions between particles (although 

osmotic interactions are negligible for microorganisms (Hermansson 1999)). Steric interactions and hydration forces 

may also hinder the association of viruses with particles (Gutierrez and Nguyen 2012). 

Electrostatic interactions between viruses and particles are influenced by the overall surface charge of the 

virus capsid and of the particle surface (Templeton et al. 2008). The different carboxyl groups and amines in a virus 

capsid may ionize at different pH levels (Flint et al. 2009), giving the virus an electrical charge which can vary with 

respect to the location on the capsid surface (Templeton et al. 2008). Results from recent work suggest that virus 

genetic material may also play a role in the overall net charge of viruses (Dika et al. 2011). The isoelectric point of a 

virus is defined as the pH at which ionization of virus capsid functional groups is such that the net charge of the 

virus is neutral. In general, viruses have a net positive charge at pH levels below the isoelectric point, and a net 

negative charge at pH levels above the isoelectric point (Templeton et al. 2008). Suspended and dissolved particles 

in WSPs (e.g. NOM, humic materials, algal solids, bioflocs) should have a net negative charge at the pH levels 

typically encountered in WSPs. The pH level in anaerobic ponds is typically neutral; the pH in facultative ponds 

may be slightly higher; maturation ponds typically have the highest pH levels (often as high as 9). The isoelectric 

point of most waterborne viruses is generally between 3.5 and 7 (Michen and Graule 2010). It would follow that 

viruses in WSPs would tend not to be particle-associated. However, this is not necessarily true in all circumstances 

because other mechanisms may favor virus attachment (Templeton et al. 2008). Increased ionic strength and 

hardness of water favors increased virus attachment to particles (Kohn et al. 2007; Schijven and Hassanizadeh 
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2000), and these conditions may vary in WSPs due to differences in climate, geology, and human behavior (water 

use practices).  

Hydrophobic interactions between viruses and particles are also believed to play an important role in virus-

particle associations (Schijven and Hassanizadeh 2000). Proteins in virus capsids can contain spans of hydrophobic 

amino acids, which may explain why some viruses (e.g. rotavirus) aggregate at pH levels above their isoelectric 

point (Gutierrez et al. 2010). The increased hydrophobicity of a virus particle would make it more likely to interact 

with other hydrophobic surfaces. Similarly to electrostatic interactions, hydrophobic interactions are dependent on 

the characteristics of the virus, the particle surface, and the water (Schijven and Hassanizadeh 2000). Steric effects, 

such as steric hindrance, have been implicated in several studies on the interaction of microorganisms with particles 

or surfaces (Foppen et al. 2008). The presence of divalent cations can alter the surface of NOM, in some cases 

reducing the steric effects and allowing for better adsorption of viruses to organic matter (Pham et al. 2009). 

 

3.4.2 Particles in Waste Stabilization Ponds  

Virus-particle interactions are dependent on the characteristics of the particles. Suspended particles and 

dissolved NOM in untreated sewage differs structurally and chemically from that which is found in natural water 

reservoirs (Ma et al. 2001). Specifically, wastewater NOM contains less humic material and more hydrophilic 

material than NOM from natural aquatic systems, and provides higher quantum yields of reactive oxygen species 

(Mostafa and Rosario-Ortiz 2013) which can inactivate viruses. WSP suspended solids mostly consist of algae 

(Mara 2003), which is different from the suspended solids in untreated sewage and in wastewater treated by other 

processes. Maturation ponds will typically contain higher concentrations of algae than other pond types, especially 

anaerobic ponds. Anaerobic ponds may also change the composition and characteristics of wastewater in ways that 

are different from aerobic ponds. Barker et al. (1999) found that the majority of the soluble residual COD in the 

effluent of anaerobic reactors consisted of material with lower molecular weight distributions (<1 kDa) than those 

found in the effluent of aerated systems (Barker and Stuckey 1999). In a manure soil amendment study, Davis et al. 

(2006) reported that MS2 coliphage in anaerobically-treated dairy manure absorbed to soil more readily than MS2 

coliphage in untreated manure; however, the treatment did not affect poliovirus in the same way. Metals are also 

reduced in this environment and in aerobic conditions, they can become mobile. Metals such as Fe may also coat 

particles in wastewater, forming and dissolving under different redox conditions (Leppard et al. 2003).  
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3.4.3 Microbial Communities in Waste Stabilization Pond Systems 

The microbial communities present in WSPs also influence virus-particle associations. Viruses in WSPs 

display reversible adsorption to suspended algae and bacteria (Sobsey and Cooper 1973), which may depend on the 

level of dissolved oxygen in the water (Ohgaki et al. 1986). Viruses may also be internalized by larger organisms 

(e.g. nanoflagellates), and could potentially settle to the bottom of ponds with these larger organisms (see Section 

3.2.2). The influence of the overall microbial communities present in WSP systems may be especially relevant for 

polishing ponds treating the effluent of different types of anaerobic or aerobic reactors. Anaerobic reactors are 

frequently used in combination with polishing ponds, especially in tropical regions and developing countries. The 

microbial communities in some reactors, such as upflow anaerobic sludge blanket reactors are subjected to 

conditions that stimulate the production of granular sludge. Viruses may become enmeshed within these substances 

(see Chapter 4 of this dissertation). Anaerobic granular sludge is also quite sensitive to abrupt changes in the 

characteristics of wastewater, and as a result these biogranules sometimes disintegrate (Liu et al. 2004). If viruses 

are enmeshed within biogranules that subsequently disintegrate into smaller pieces and exit a reactor, viruses may 

enter polishing ponds associated with smaller particles.  

 

3.5 Relationship between Pond Hydraulics and Virus Removal 

WSPs are non-ideal reactors, and just as the hydraulic efficiency of a pond can influence the removal of 

parasites (Verbyla et al. 2013) and bacteria (von Sperling 2005), it can also influence the efficiency of virus removal 

by creating short circuits and dead zones, resulting in HRT that is lower than the theoretical value (Herrera and 

Castillo 2000). Overall virus removal in ponds has been assumed to be pseudo-first order, and the rate of exogenous 

sunlight-mediated virus inactivation in WSP waters has second-order kinetics (Kohn and Nelson 2007; Mattle et al. 

2015). Therefore, individual pond geometry and hydraulics plays an important role in virus removal. Many different 

modeling approaches have been used to estimate hydraulic efficiency and the degree of mixing in WSPs, but very 

few of them have been correlated with pathogen removal (Sah et al. 2012), and even fewer studies combine 

assessments of WSP hydrodynamics with virus analyses (e.g. Frederick and Lloyd 1996; Herrera and Castillo 2000; 

Macdonald and Ernst 1986; Pedahzur et al. 1993). Still, these four studies indicate that the reduced hydraulic 

efficiency can decrease the efficiency of virus or phage removal (see Table 2). In fact, using the theoretical HRT, the 

observed virus or phage removals are less than the removal rates reported by Shuval (1990); however, when the 
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actual mean HRT values are used, the observed virus or phage removal is either within the range of rates reported by 

Shuval (1990) or very close to this range.  

Predicting the extent of hydraulic short-circuiting in ponds (without a tracer study) may assist the 

prediction of virus removal, but this is not a simple task. Computational fluid dynamics (CFD) models may be 

accurate, but require a large computational demand. Dispersed flow and tanks-in-series (TIS) models are 

computationally less demanding, but have other limitations, especially for WSP systems; for example, the dispersed 

flow model cannot account for back-mixing, and neither the dispersed flow nor the TIS model is capable of 

incorporating dead zones or recirculating fluxes, which can considerably impact the hydraulics of WSPs (Alvarado 

et al. 2012). Persson (2000) used CFD modeling to demonstrate that ponds with equal volumes, but different 

configurations, can have different HRT distributions, despite having similar theoretical mean HRT values. The 

results from dye tracer studies of full-scale WSP systems also reflect this potential high variation in HRT 

distribution. Torres et al. (1999) concluded that three facultative ponds in Spain exhibited hydraulic behavior that 

was similar to a completely mixed reactor. Macdonald and Ernst (1986) however, reported a mean HRT that was 

25% lower than its theoretical value in an Australian system consisting of four ponds in series, and detected dye in 

the effluent of the system after less than 5% of the theoretical HRT.  

 

3.6 Virus Removal in Field Studies 

3.6.1 Development of a Database for Virus Removal in Wastewater Pond Systems 

A systematic review of field studies (see Appendix A) yielded a total of 48 publications describing virus or 

bacteriophage removal from 70 different WSP systems (Alcalde et al. 2003; Bausum et al. 1983; Benyahya et al. 

1998; Betancour 2013; Botero et al. 1997; Campos et al. 2002; Ceballos et al. 1995; Davies-Colley et al. 2005b; 

Donnison and Ross 1995; El-Deeb Ghazy et al. 2008; Emparanza-Knörr and Torrella 1995; England et al. 1967; 

Fattal et al. 1998; Hadley 2013; Herrera and Castillo 2000; Hodgson and Paspaliaris 1996; Iriarte et al. 2013; Jenner 

2009; Klock and John 1971; Kott et al. 1973, 1978; Lewis et al. 1986; Lijklema et al. 1986; Lucena et al. 2004; 

Macdonald and Ernst 1986; Malherbe and Strickland-Cholmley 1967a; b; Morris 1984; Nupen 1970; Nupen et al. 

1974; Ohgaki et al. 1986; Omura et al. 1985; Oragui et al. 1987, 1995; Pearson et al. 1995; Pedahzur et al. 1993; 

Rao et al. 1981; Reinoso et al. 2008b, 2011; Salter et al. 1999; Sheladia et al. 1982; Shuval 1970; da Silva et al. 

2008; Silverman et al. 2013; Soler et al. 1995; Turner and Lewis 1995; Zhenbin et al. 1993).  
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Table 2. Studies reporting virus removal and hydraulic efficiency in the same pond system. 

Location 
Number 
of Ponds 
in Series 

Type of Virus/Phage 

Theoretical 
Overall HRTa 
(Actual Mean 
HRT) (days) 

Observed Overall 
Virus/Phage 

Removal 
(log10 reduction) 

Days of theoretical 
HRT (actual HRT) 

for each log10 
removal of viruses 

Notes Reference 

West Camden, 
Australia 2 Culturable enteric virus 

using cell line inoculations 
34 

(14.1) 1.2b 28.3 
(11.8) 

Both ponds were baffled, 
but authors observed dye 
leaking through baffle 
joints 

MacDonald 
& Ernst 
(1986) 

Windsor, 
Australia 4 Culturable enteric virus 

using cell line inoculations 
16 

(12.0) 1.2b 13.3 
(10.0) 

These ponds were not 
baffled, and treated the 
effluent of a trickling 
filter system 

MacDonald 
& Ernst 
(1986) 

Sha'alvim, Israel 1 F+ coliphage (using host 
S. typhimurium WG-49) 

5 
(2.5 - 4.5) 0.8 6.3 

(3.1 - 5.6) 

For this experiment, the 
pond had four horizontal 
plastic-cloth baffles 

Pedahzur et 
al. (1993) 

Cayman Islands 1c 
Bacteriophage  

(using host Serratia 
marcescensSM24) 

11.5 
(1.7) 

Not Reported 
(phage used as tracer) n/a 

Authors reported that 
prevailing wind direction 
increased short-circuiting 

Frederick 
& Lloyd 
(1996) 

Melipilla, Chile 2 
Coliphage (authors do not 
report which E. coli strain 

was used as host) 

29.2 
(11.1) 1.3d 22.4 

(8.5) 
Experiments were carried 
out in the winter 

Herrera & 
Castillo 
(2000) 

Melipilla, Chile 2 
Coliphage (authors do not 
report which E. coli strain 

was used as host) 

38.3 
(13.0) 2.9d 13.2 

(4.5) 
Experiments were carried 
out in the summer 

Herrera & 
Castillo 
(2000) 

Notes: 
a   HRT = hydraulic retention time 
b   The authors reported virus concentrations after 16 and 10 days of retention for the West Camden and Windsor systems, respectively, which do not correspond 

exactly to the reported mean overall hydraulic retention times for these systems 
c   This system actually had two facultative ponds in parallel, followed by two maturation ponds in series, but the authors only studied one of the first two 

facultative ponds 
d The removal of phage in this pond system was not directly measured by the authors; inferred removal values are reported here based on the coliphage decay 

coefficient reported by the authors based on batch experiments with the same pond water and the dispersed flow model using dispersion coefficients based on 
the authors' results from the dye tracer study. 
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Results for WSP systems in Yungas, Bolivia (see Section 4.2) and a municipal WSP system in Michigan 

(see Section 4.3) were also used in the analysis, bringing the total number of systems up to 71. One of the 

publications presented data from a high-rate pond system (Davies-Colley et al. 2005b), including ponds with 

mechanical mixing and other unique design aspects; this data was not used for subsequent analyses. References were 

found for eight additional publications that may have contained useful data, but the journals were not accessible. If 

data were presented from different times throughout the year, the mean log10 removal and HRT values were used. If 

data were presented for several different types of viruses in the same WSP system, a unique value for log10 removal 

was used for each virus type. Figure 8 contains histograms showing the distribution of characteristics of the WSP 

systems included in this analysis (latitude, number of ponds in series, viruses analyzed, and theoretical HRT). 

Information about the types of ponds in each system (anaerobic, facultative, maturation, polishing, surface-aerated) 

was also recorded (Appendix A, Figure A1), although some authors did not report this information. The final set of 

data included 106 values for theoretical HRT paired with an equal number of values for mean log10 virus or 

bacteriophage removal. 

 
Figure 8. Histograms showing the characteristics of the pond systems and viruses targeted in the studies. 
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A variety of methods were used by the authors of the different studies to quantify viruses and 

bacteriophages in wastewater samples (Appendix A, Figure A2). Of the 106 points in the database, six of them came 

from studies where authors only reported the presence or absence of viruses in replicate samples. For these data, 

virus concentrations were calculated using a maximum likelihood estimator (Jarvis et al. 2010, see Appendix A). 

A ratio (termed here as the HRT-removal ratio) was calculated for each system by dividing the theoretical 

HRT of the overall system by the overall log10 reduction of viruses (the difference between concentrations reported 

at the influent and effluent of each system). This ratio represents the number of days of HRT required for each log10 

reduction in the concentration of viruses in the WSP systems analyzed. A probability plot correlation coefficient test 

for normality (NIST/SEMATECH 2012) indicated that the HRT-removal ratios are log-normally distributed, so the 

natural logarithms of the HRT-removal ratios were used in subsequent statistical analyses. Six data points were 

found to be outliers based on their positions in a Q-Q plot. They were removed from the data set. The remaining 100 

points were used in the analyses. 

 

3.6.2 Statistical Analysis and Discussion of Virus Removal 

The theoretical hydraulic retention times and the corresponding mean log10 virus removals reported in the 

literature are plotted in Figure 9. As mentioned previously, the overall consensus about virus removal in WSPs has 

changed considerably throughout the years. Feachem et al. (1983) reported that enteric viruses would be reduced by 

1- to 2-log10 units for every five days of retention in ponds with temperatures exceeding 25°C; but only 22% of the 

total observations from the literature (28% for phages, 19% for enteric viruses) fell within this range (70% are lower 

than this range). Shuval et al. (1986) and Shuval (1990) concluded that virus removal in a 20-day pond system with 

temperatures above 20°C should be between 2- and 4-log10 units, a claim recently cited by Drechsel et al. (2010); 

however only 32% of observations (30% for phages, 34% for enteric viruses) fell within this range and 37% were 

lower than this range. Maynard et al. (1999) reported that overall removal in ponds was generally less than one 

log10-unit; however virus removal was greater than one log10 in 62% of the field studies (65% for phages, 59% for 

enteric viruses). 
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Figure 9. Theoretical hydraulic retention times versus mean log10 virus removals from the literature. 

There do not appear to be any trends that adequately describe the removal of viruses in WSP systems based 

on the theoretical HRT alone. There is only a weak to moderate correlation between the theoretical HRT and the 

virus removals reported (Pearson’s r = 0.34, p = 0.001). Additionally, the correlation between HRT and 

bacteriophage removal (Pearson’s r = 0.37, p = 0.017) is nearly the same as the correlation between HRT and enteric 

virus removal (Pearson’s r = 0.32, p = 0.013). The best-fit log-linear function only explains 12% of the variance in 

the data, and the best-fit log-log function explains only 18% of the variance. A log-linear regression using two 

factors (HRT and number of ponds in series) only explains 23% of the variance in the data. None of these models 

would be adequate for the specification of a design equation or guidelines for virus removal based on theoretical 

HRT alone.  

In order to evaluate virus removal in systems with different numbers of ponds in series, data were 

organized into groups based on the number of ponds in series. Welch’s one-way ANOVA and the Games-Howell 

post-hoc test (Wilcox 1987) were performed on the log-transformed HRT-removal ratios for pond systems with a 

different number of ponds in series (α = 0.01), and results indicate that systems with more ponds in series do not 
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have significantly higher HRT-removal ratios. There was also no significant correlation between the number of 

ponds in series and the HRT-removal ratios, and the correlation coefficients for phages were the same as they were 

for enteric viruses (Pearson’s r = -0.1, p = 0.32 and 0.25 for phages and enteric viruses, respectively). Ninety-five 

percent of the HRT-removal ratios (for all systems and all virus types) are less than 54 days (see Figure 10); and the 

geometric mean of these ratios is 14.5 days. However, using Cox’s method for log-normally distributed variables 

(Zhou and Gao 1997), the mean HRT-removal ratio for all virus types in all WSP systems (regardless of the number 

of ponds in series) is estimated to be 20.9 days (95% C.I.: 17.2, 25.5). The correlation between virus removal and 

solar insolation was also investigated (using average daily solar insolation values for the latitude of each pond 

system, gathered from the United States National Aeronautics and Space Administration (NASA 2014)). For pond 

systems with one, two, three, and four ponds in series, there was no significant correlation between the HRT-

removal ratios and solar insolation. For systems with more than four ponds in series, Pearson’s r was equal to -0.62 

(see Appendix A, Table A1, Figure A3).  

 
Figure 10. Histogram of the ratios of the overall theoretical hydraulic retention time and the log10 removal of 
viruses in the waste stabilization pond systems. 

3.6.3 Limitations of the Analysis of Data from Field Studies 

The results associated with this analysis of virus removal in field studies have the following limitations: 1) 

much of the data used in the analysis are from studies that used bacteriophage as a surrogate for human enteric 

viruses; some phages (somatic coliphage in particular) have poor specificity for predicting human versus animal 

fecal contamination (Harwood et al. 2013); 2) the data represent measurements made using a variety of methods to 

quantify virus concentrations (Appendix A, Figure A2), which may have different sensitivities and specificities 

(Flint et al. 2009); 3) the data represent observations made on systems with a mixture of different pond types (e.g. 

anaerobic, facultative, maturation/polishing), and virus removal efficiency may be greater in maturation ponds than 



www.manaraa.com

51 

it is in other types of ponds; and, 4) the data only represent the mean log10 removal of viruses and the mean 

theoretical HRT of the overall WSP system (the variability or uncertainty associated with such estimates is often not 

reported in the literature). Values reported for theoretical HRT in each of the studies may not even be based on 

actual flow rates measured during the time of virus sample collection. It is possible that the flow rates or HRT values 

reported by the authors of the studies reviewed in Section 6.2 were only estimates (rather than measured values).  

 

3.7 Summary, Knowledge Gaps, and Conclusions 

This review presents the first comprehensive analysis of overall virus removal in 70 WSP systems located 

throughout the world, demonstrating that there is only weak to moderate (but significant) correlation between the 

theoretical HRT of pond systems and the log10 removal of viruses. The virus removal rates from these field studies 

are highly variable and are generally lower than the rates reported previously by Feachem et al. (1983), Shuval et al. 

(1986), Shuval (1990), Maynard (1999), and Drechsel et al. (2010). In the past decade, much progress has been 

made toward increasing the understanding of the mechanisms responsible for virus removal in WSP systems. Recent 

research is helping to elucidate the relative importance of direct versus indirect sunlight-mediated mechanisms. 

While efficiency differs between virus species, sunlight disinfection efficiency may be correlated to virus genome 

type and length (e.g. Lytle and Sagripanti 2005), and the characteristics of virus capsid proteins (e.g. Bosshard et al. 

2013). Another major finding, which contradicts some earlier conclusions about virus removal in ponds, is that virus 

associations with particles in WSPs do not necessarily result in virus removal by sedimentation (da Silva et al. 2008; 

also, see Chapter 4 of this dissertation). Bacteriophages have been used as surrogates to help understand enteric 

virus removal in WSP systems. MS2 coliphage in particular is recommended as a surrogate to study sunlight-

mediated virus inactivation in WSPs (Mattle et al. 2015). The results from the analyses used in this review do not 

indicate any statistically significant difference between the removal of bacteriophages and the removal of enteric 

viruses in WSP systems, however more research may be needed to confirm this. 

There are still many gaps in the literature. For example, there is no model that adequately and accurately 

describes virus removal in WSP systems. There is a need to develop a design equation for virus removal in WSP 

systems that can be used for water reuse planning, and can be incorporated into the next edition of the World Health 

Organization Guidelines for Wastewater Use in Agriculture (WHO 2006). A better understanding about the 

relationship between virus removal and the hydraulic efficiency of ponds may be needed in order to develop such a 
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design equation. Another major area where future research is needed is on the interaction of viruses with particles 

and with other micro- and macro-organisms in WSPs. It is still unclear whether virus internalization by higher-

trophic organisms has a protective or a detrimental effect on virus viability in WSP systems. Also, the effect of 

virus-particle associations on sunlight-mediated inactivation mechanisms is still unclear. Recent advances in the 

development of genomic and proteomic methods provide unique opportunities for future research to help elucidate 

the fundamental mechanisms responsible for virus removal in WSP systems (e.g. Bosshard et al. 2013). Also, the 

recent development of the periphyton oxidation pond (Nelson et al. 2013) also provides a promising outlook for a 

new WSP technology that may improve the efficiency of virus removal.  
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4 VIRUS-PARTICLE ASSOCIATIONS IN WASTE STABILIZATION PONDS AND UASB 

REACTORS4 

4.1 Overview 

There is insufficient evidence in the literature to determine whether or not virus settling (after association 

with larger particles) is an important removal mechanism in WSPs (see Chapter 3). Virus-particle associations in 

WSP systems have also not been well-studied. The use of different wastewater treatment technologies in 

combination with WSPs may change the dynamics of virus-particle associations and overall virus removal 

efficiency. The use of UASB reactors to treat domestic wastewater is rapidly gaining acceptance in low-income 

countries and in countries with emerging economies (Lettinga 2010). In Latin America and South Asia, new 

wastewater treatment systems are often designed with UASB reactors followed by WSPs, and UASB reactors are 

also commonly added to the front of existing WSP systems to increase the overall treatment capacity in cities and 

towns with growing populations. Given that UASB reactors are specifically designed to allow for the production of 

granular sludge, it is important to understand whether or not the use of UASB reactors in combination with WSPs 

changes virus-particle associations or affects the overall efficiency of virus removal.  

The objective of this chapter is to measure the removal of viruses and their association with particles in 

WSPs, UASB reactors, and systems with UASB reactors and WSPs. Section 4.2 includes a comparative case study 

of virus removal in the same two WSP systems presented in Section 2.1, which serve two similar small towns in the 

Yungas region of Bolivia. One system consists of three ponds in series, and the other consists of a UASB reactor 

followed by two ponds in series. Quantities of several enteric viruses and proposed viral surrogate PMMoV are 

measured in water samples from both systems, and the associations of these viruses with wastewater particles are 

measured using a cascade filtration study. The additional virus removal required for safe reuse for irrigation is 

estimated for both systems using QMRA. The study presented in Section 4.3 expands upon the preliminary findings 

                                                           
4 Sections 4.2 and 4.3 are written as stand-alone documents and formatted as manuscripts. The reason for this is because Section 4.2 was 

published in Water Research in 2014. The research presented in Section 4.3 builds off of the findings from Section 4.2, and an abstract for the 
material presented in Section 4.3 was accepted for presentation at the 11th IWA Specialist Group Conference on Wastewater Pond 
Technologies, in Leeds, UK, on March 21 – 23, 2016. Section 4.3 (or a slightly shorter version of it) will be submitted to the conference 
program committee by December 11, 2015, for publication in the conference proceedings.  



www.manaraa.com

54 

from the virus-particle association study presented in Section 4.2 by measuring the quantities of an additional enteric 

virus (human adenovirus (AdV)) in the Yungas system samples, and in samples collected from three other 

wastewater treatment systems in the United States and Brazil with WSPs, UASB reactors, or a combination of both 

technologies.  

 

4.2 Enteric Virus Removal and the Risk of Water Reuse for Two Waste Stabilization Pond Systems5 

4.2.1 Introduction 

Freshwater resources are limited and a growing number of watersheds may be affected by freshwater 

scarcity because of changes in climate, urbanization, population, and land use (Fry et al. 2008). Accordingly, it has 

become increasingly important to assess wastewater for its reuse potential, especially in expanding small cities and 

towns that are geographically and economically connected to agricultural areas (Chapter 2 of this dissertation). 

Despite the potential health concerns associated with human pathogens in domestic wastewater, this water source is 

rich in biologically-available nutrients and is currently used to irrigate 20 million hectares globally (Raschid-Sally 

and Jayakody 2008). However, 1.5 billion people worldwide still discharge untreated wastewater (Baum et al. 2013) 

and 3.5 million hectares of crops are irrigated with untreated wastewater (Drechsel et al. 2006). In places where 

wastewater reuse for agriculture is a priority, it is necessary to identify practical treatment technologies for removal 

of pathogens.  

Waste stabilization ponds (WSPs), which consist of shallow engineered basins, stabilize and treat 

wastewater via natural processes driven by sunlight and biological flora proliferation and predation. WSPs are one 

of the most prevalent treatment technologies in the world, particularly for small towns and developing communities 

(Maynard et al. 1999; Oakley 2005a). There are many types of ponds (e.g. high-rate algal ponds, aerated ponds); 

however, a common configuration consists of a facultative pond followed by one or more maturation ponds. 

Facultative ponds are typically designed to reduce biochemical oxygen demand (BOD) and total suspended solids 

(TSS), whereas maturation ponds are designed to remove pathogens (Maynard et al. 1999). While some WSP 

                                                           
5 Reprinted from Water Research, Volume 65, E.M. Symonds, M.E. Verbyla, J.O. Lukasik, R.C. Kafle, M. Breitbart, J.R. Mihelcic, “A case 

study of enteric virus removal and insights into the associated risk of water reuse for two wastewater treatment pond systems in Bolivia.” 
Pages 257 – 270. Copyright 2014, with permission from Elsevier. Permission is included in Appendix F. 
The two lead authors for this publication, E.M. Symonds (EMS) and M.E. Verbyla (MEV), were credited as having made equal contributions 
to the work. EMS and MEV both determined the research questions, which were reviewed by JRM and MB; EMS took the lead on designing 
the sampling and laboratory methods with support from MB; EMS performed the laboratory work with assistance from MEV; the culturable 
EV analysis was done by JOL; MEV took the lead on the quantitative microbial risk assessment with support from RCK. EMS and MEV both 
wrote the manuscript and the supporting information (found in Appendix B), with review and input from all other authors. 
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systems utilize chemical disinfectants for pathogen reduction, many rely on natural mechanisms that are complex 

and poorly understood (particularly for virus removal). Previous investigations have demonstrated that WSP systems 

consisting of a facultative pond followed by two maturation ponds can provide > 4-log10 removal of bacterial 

indicators (von Sperling 2005); however, the extent of enteric virus removal in WSPs is not as well understood. 

Enteric virus removal in WSPs can occur through sedimentation (when viruses are attached to settleable 

particles), predation, or disinfection (e.g. nucleic acid damage by UV light; capsid damage via high temperatures, 

high pH levels, and exposure to reactive oxygen species). However, the relative importance of each of these 

mechanisms is not clear, and dominant removal mechanisms may vary for different viral types (Maynard et al. 

1999). Virus settling in WSPs is contingent upon virus-particle adsorption, which is driven by a combination of 

electrostatic, hydrophobic, and steric interactions and is dependent on environmental conditions and the 

characteristics of both particle surfaces and viruses (Templeton et al. 2008). Some studies have shown significant 

virus adsorption to non-settleable particles (<180-µm), implying that sedimentation may not be the driving virus 

removal mechanism (da Silva et al. 2008; Templeton et al. 2008).  Furthermore, virus association with non-

settleable particles may affect their vulnerability to disinfection, either by protecting them from direct sunlight 

inactivation or by making them more vulnerable to indirect sunlight-mediated inactivation mechanisms (Kohn et al. 

2007; Templeton et al. 2008). Previous studies that have addressed enteric virus removal in pilot-scale WSP systems 

in Brazil (Oragui et al. 1987, 1995) and in full-scale WSP systems in Egypt (El-Deeb Ghazy et al. 2008), France (da 

Silva et al. 2008), India (Rao et al. 1981), and the United States (Bausum et al. 1983), have demonstrated highly-

variable removal, ranging from 1- to 5-log10.  

Over the past 30 years, high-rate anaerobic reactors, such as upflow anaerobic sludge blanket (UASB) 

reactors, have become more widely accepted for the treatment of domestic wastewater, particularly in warm climates 

(Lettinga 2010). Unlike facultative ponds, UASB reactors allow for biogas recovery. However, UASB reactor 

effluent requires post-treatment for pathogens, which is frequently accomplished with maturation (polishing) ponds 

(Chernicharo 2007). UASB reactors also differ from other wastewater treatment reactors because they are optimized 

for the formation of large biological flocs and granular sludge (biogranules), which may enmesh viruses. However, 

the influence of particle association on virus removal in UASB-pond systems is not well-understood.  

The two systems analyzed in this study are located in the remote, tropical Yungas region of Bolivia. The 

first system (three-pond system) consists of a facultative pond followed by two maturation ponds; the other (UASB-
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pond system) consists of a UASB reactor followed by two polishing ponds (Table 3). These systems have been 

evaluated previously for their overall treatment performance (Muga et al. 2009b), appropriateness (Fuchs and 

Mihelcic 2011), resource recovery potential (Chapter 2 of this dissertation), parasite removal, and hydraulic 

efficiency (Verbyla et al. 2013). A recent study also quantified the reduction in environmental impacts (e.g. 

eutrophication potential, global warming potential, embodied energy) if the treated wastewater from these systems 

was reused for irrigation (Cornejo et al. 2013). Water reuse is a particular priority for these communities, given that 

water stress in this region has been linked to climate change (Fry et al. 2012). In Bolivia, acute diarrhea contributes 

to 5% of all deaths and a disease burden of 0.015 disability-adjusted life years (DALYs) per person annually (Prüss-

Üstün et al. 2008). 

Table 3. The waste stabilization pond systems analyzed in this study. 

System 
(population 

served in 2012) 
Sampling Sites 

Pond 
Dimensions 

(L × B × D, m) 

Theoretical hydraulic retention 
(days) 

June 17, 2012 June 19, 2012 

Three-Pond 
(780 people) 

A Untreated sewagea 
B Facultative pond (effluent) 
C Maturation pond 1 (effluent) 
D Maturation pond 2 (effluent) 

 
50x27.5x1.8 
39x13x1.5 
39x13x1.5 

 
16.8 
4.6 
4.6 

Total = 26.0 

 
16.5 
4.5 
4.5 

Total = 25.5 

UASB-Pond 
(1,310 people) 

F Untreated sewageb 
G UASB reactor (effluent) 
H Polishing pond 1 (effluent) 
I Polishing pond 2 (effluent) 

 
 

60x21x1.5 
60x23x1.5 

 

 
1.2 

26.8 
29.6 

Total = 57.6 

 
0.6 

12.4 
13.7 

Total = 26.7 
a Sample collected at the influent of the facultative pond (this system has no grit chamber) 

b Sample collected at the influent of the UASB reactor (effluent of the grit chamber) 
 

Because human enteric viruses pose a threat to public health, are resistant to wastewater treatment, and can 

persist in the environment, the primary objective of this investigation was to measure the removal of culturable 

enteroviruses (EV), as well as the removal of human norovirus genotype I (NoVGI), human rotavirus (RV) group A, 

and pepper mild mottle virus (a recently proposed surrogate for enteric viruses; PMMoV (Rosario et al. 2009)) using 

quantitative polymerase chain reaction with reverse transcription (RT-qPCR). Secondarily, virus-particle 

associations were studied to help elucidate possible virus removal mechanisms. Finally, the additional virus removal 

required for safe reuse of effluent from these two systems for restricted irrigation was evaluated using a quantitative 

microbial risk assessment (QMRA) model. The effluent from these two systems is not currently reused, but 

wastewater reuse is common practice in Bolivia. More than 7,000 hectares are currently irrigated with wastewater in 
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Bolivia, and the government has proposed a strategy to increase wastewater-irrigated agriculture to 10,000 hectares 

by 2025 (Viceministerio de Recursos Hídricos y Riego 2013). Furthermore, local farmers have expressed interest in 

restricted reuse for irrigating fodder crops or high-growing fruit trees in light of increasing water scarcity.  

This study is among a handful of investigations in which enteric virus removal is evaluated in full-scale 

WSP systems. Despite the limited sampling period, this study also represents the first time, to our knowledge, that 

virus removal is compared in a conventional full-scale stabilization pond system and a WSP system with a UASB 

reactor and polishing ponds. Furthermore, measurements of virus concentrations are used in the QMRA model to 

predict the additional virus removal required to protect adult farmers and children at play, providing important 

perspective on the suitability of treated wastewater reuse in agriculture. 

 

4.2.2 Materials and Methods 

4.2.2.1 Wastewater Composite Samples and Sludge Collection 

Composite, 24-hour wastewater samples were collected simultaneously from both systems on two different 

days in June 2012 (Table 3). Samples from sites B, C, D, G, H, and I (described in Table 3) were collected during 

the first sampling event and analyzed for virus-particle associations.  Samples from all sites were collected during 

the second sampling event in order to analyze the removal of viruses from the systems. The second set of samples 

from the UASB-pond system was limited to a 13-hour collection, such that sampling did not occur overnight due to 

unexpected rainfall substantially increasing flow rates; however, the 13-hour collection encompassed both known 

morning and evening peaks in flow.  Sludge core samples were collected from the UASB reactor and from the 

facultative pond (near the influent pipe) after the second sampling event, using a ½-inch PVC pipe, and were placed 

in sterile, opaque, 500-ml HDPE bottles. All samples were maintained in the dark on ice during collection and 

transport to the laboratory.  

 

4.2.2.2 Quantification of Culturable Enteroviruses 

Composite wastewater and sludge core samples were maintained in the dark on ice until they were received 

and processed (within 72 hours of collection) by BCS Laboratories (US National Environmental Laboratory 

Accreditation Program (NELAP), FL DOH Lab ID E82924; US EPA Lab ID FL01147). Analysis was performed as 

per US EPA/600/R-95/178 and US EPA 1615 for total culturable enteric viruses and specifically selecting for EV by 



www.manaraa.com

58 

the use of the Buffalo Green Monkey (BGM) cell line (Rodriguez et al. 2008; US EPA 2001a, 2012b). Sample 

extracts/concentrates were analyzed by monitoring for cytopathic development on recently passaged, BGM 

monolayers (passage 130-155). Concentrates from sludge samples were isolated per US EPA/625/R-92/013 

Appendix H (ASTM method 4994-89, approved 2002) (US EPA 2003). Given the concentrated and turbid nature of 

the wastewater, wastewater extracts were not concentrated via US EPA method 1615 because that method was 

developed for relatively well-treated, dilute, low-turbidity, and low-pH wastewater (US EPA 2012b). Alternately, 

wastewater samples were diluted with 1% beef extract (Neogen, Lansing, MI), homogenized for 15 min, centrifuged 

at 10,000×g for 15 min, and the resulting supernatants were filtered through a protein pretreated 0.22-μm filter 

(Corning Inc., Corning, NY) and supplemented with penicillin/streptomycin and amphotericin B (Corning Inc., 

Corning, NY) prior to inoculation onto cell monolayer (US EPA 2003).  

Foci of infection of culturable EV were observed and counted on the BGM monolayers within 7 days of 

inoculation. The cells were incubated for 14 days. Flasks demonstrating negative cytopathic effects (CPE) were 

freeze thawed at -80°C and inoculated onto fresh BGM cells for a second passage of 14 days.  Positive and negative 

CPE results were used to calculate the Most Probable Number (MPN) of culturable EV. In all wastewater and sludge 

samples, the MPN had a NELAC data qualifier indicating the actual value was known to be greater than the 

observed value, except for the three-pond system effluent (site D in Table 3), where the observed value was between 

the laboratory method detection limits and the laboratory practical quantitation limit. 

 

4.2.2.3 Virus Isolation and Concentration for Molecular Analyses 

Because adsorption-elution methods require smaller sample volumes and have been shown to effectively 

isolate and concentrate intact viruses from wastewater for genomic quantification analyses (Haramoto et al. 2008), a 

modified absorption-elution method was used to concentrate the viruses. To measure virus concentrations in each of 

the eight composite wastewater samples collected during the second sampling event at points A – D and F – I, 60-ml 

samples were acidified to pH 3 using 1M acetic acid and filtered onto a 0.45-µm, mixed cellulose ester, 47-mm 

diameter filter (Type HAWP; Millipore, Billerica, MA) in triplicate using a modified can crusher (Appendix B, 

Figure B1), sterile syringe, and syringe filter holder. Filter holders, initially sterile and dedicated to each WSP 

system, were rinsed 3x with distilled water between samples, and all samples were processed from most treated 

(WSP effluent) to least treated (WSP influent) to minimize cross contamination. As an additional precaution, 
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process blanks, using distilled water, were collected from each filter holder after all samples had been processed to 

examine a worst-case contamination scenario. The filters containing the viruses were aseptically folded in half, 

placed in bead beating tubes (lysis matrix E; MP Biomedical, Solon, OH) containing 600 μl of buffer RLT Plus 

(Qiagen, Valencia, CA), and stored in the dark at 4°C for three days prior to storage at -80°C.  

To investigate virus-particle associations, a series of filters were employed to capture viruses attached to 

particles of different sizes as described previously (da Silva et al. 2008). In order to minimize contamination, filter 

holders were dedicated to a particular WSP system and a single filter type (e.g. 180-µm filters were never placed in 

a holder designated for 0.45-µm filters). Furthermore, process controls were collected as described above. Triplicate 

80-ml samples were isolated from the influent and effluent points of the maturation and polishing ponds from 

composite samples. Each sample was split into two 40-ml subsamples, one of which was filtered in the field through 

the following cascade of 47-mm diameter filters: 180-µm nylon net (Millipore, Billerica, MA), 0.45-µm mixed 

cellulose ester (Type HAWP; Millipore, Billerica, MA), and a positively charged (+) 0.45-µm LifeAssure® 

membrane (Regal-Brown, Daphine, AL). The other 40-mL subsample was acidified and collected onto 0.45-µm 

mixed cellulose ester filters, as described previously. All filters were aseptically placed into bead beating tubes (lysis 

matrix E; MP Biomedical, Solon, OH) containing 600 μl of buffer RLT Plus (Qiagen, Valencia, CA) and stored in 

the dark at 4°C for 10 days prior to storage at -80°C. 

 

4.2.2.4 RNA Purification and Reverse Transcription 

For RT-qPCR analyses, all filters were thawed on ice prior to RNA purification. Once thawed, 100 μl of 

buffer RLT plus (Qiagen, Valencia, CA) was added to each sample. Filters were mechanically disrupted via bead 

beating (Pewee Boxer model 3115RS-12T-B20; Biospec Products, Bartlesville, OK) for a total of 3 min (in 1-min 

intervals) at maximum speed. RNA was purified from the resulting lysate using the AllPrep DNA/RNA Mini Kit 

(Qiagen, Valencia, CA), following manufacturer’s instructions, and eluted with 50 µl molecular grade water. RNA 

was immediately reverse transcribed with random hexamers using the Superscript III First Strand Synthesis for RT-

PCR (Invitrogen, Carlsbad, CA) per manufacturer’s instructions. Extraction blanks, containing only the kit reagents, 

were processed alongside samples to ensure the absence of cross-contamination. RNA and cDNA were stored at -

80°C and -20°C, respectively. No contamination was observed during RNA purification and reverse transcription for 

any of the molecular targets. 
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4.2.2.5 RNA Purification and Reverse Transcription Control 

To ensure adequate purification of sample RNA and reverse transcription of cDNA, each sample as well as 

a calibrator sample containing molecular grade water, was spiked with 5×109 copies of a synthetic equine arteritis 

virus (EAV) RNA oligonucleotide prior to bead beating  (see Appendix B). Before the synthetic EAV 

oligonucleotide was added, the absence of EAV in the wastewater samples was confirmed through qPCR analysis. 

The efficiency of RNA purification and reverse transcription was determined by comparing the average qPCR-

determined concentration of EAV in the calibrators to the average concentration of EAV in each spiked sample.  

Of the 96 wastewater samples collected, the vast majority of the RNA purification and reverse transcription 

efficiencies were >10%, with the exception of a few samples from both WSP systems collected on (+) 0.45-μm 

filters (4 of 18 samples) and a 180-μm filter (1 of 18 samples), which had efficiencies between 1% and 10%. In 

addition, one acidified sample from the UASB-pond system collected on a 0.45-μm filter and three samples from the 

UASB-pond system collected on a (+) 0.45-μm filter had efficiencies <1% and were excluded from further analyses.  

 

4.2.2.6 Molecular Quantification of EAV, NovGI, RV, and PMMoV 

Quantitative PCR, using published primers and probes, was used as previously described with minor 

modifications to determine the concentrations of RV, NoVGI, PMMoV, and the EAV purification control in each 

sample (Appendix B, Table B1) (Rosario et al. 2009; Svraka et al. 2009). Briefly, all samples, process controls, 

calibrators, and purification blanks for each target virus and extraction control were assayed alongside manufactured 

plasmids, containing the appropriate target sequence, in order to generate standard curves. Using 7500 Software 

v2.0.6 (Life Technologies), default settings were used to determine the quantification cycle (Cq) values. For each 

96-well plate, a standard curve was generated by linear regression of the relationship between the Cq value and copy 

number. Only data collected from plates whose standard curve had R2 values >0.97 and qPCR efficiencies between 

90% and 110%, were accepted (Bustin et al. 2009).  

The limit of quantification (LOQ), defined as the lowest standard dilution within the linear dynamic range 

of the standard curve, was 10 copies/reaction for EAV, NoVGI, and RV, and 100 copies/reaction for PMMoV. For 

NoVG1, PMMoV, and RV, the sample concentration was considered ‘less than the limit of detection’ (<LOD) if no 

increase in fluorescence was observed after 40 cycles. For composite samples whose mean Cq value was less than 

40 and greater than the corresponding Cq of the LOQ, the composite sample was categorized as ‘positive but below 
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the LOQ’ (+BLOQ). Based upon the observation that the undiluted sample Cq value was never greater than the Cq 

value of its 1:10 dilution, no significant PCR inhibition was observed. In order to account for the stochastic inter-

plate variability inherent to qPCR analyses, the pooled approach was used to estimate the number of copies in each 

unknown sample from the corresponding mean Cq value for plasmid standards and unknown samples for each assay 

(Sivaganesan et al. 2010) (see Appendix B). Using the estimated number of copies of EAV, NoVGI, PMMoV, and 

RV detected per qPCR reaction, the concentrations in the original composite samples from the two wastewater 

treatment systems were back-calculated to reflect all sample dilutions (e.g. nucleic acid purification through qPCR 

detection) and the original sample volume.  

The theoretical process LOQ represents the minimum concentration of viruses in the original composite 

sample that will yield a quantifiable qPCR measurement and optimistically assumes 100% recovery of the target 

virus throughout the concentration, RNA purification, and reverse transcription processes. For the 60-ml composite 

samples analyzed for virus concentrations, the theoretical process LOQ was 11 copies/ml for NoVGI/RV and 109 

copies/ml PMMoV. Similarly for the 40-ml composite samples analyzed for virus-particle associations, the 

theoretical process LOQ was 16 copies/ml for NoVGI/RV and 164 copies/ml for PMMoV. It is likely that actual 

process LOQ is much higher than the theoretical process LOQ given the inevitable losses associated with each step 

prior to RT-qPCR analysis. 

 

4.2.2.7 Quantitative Microbial Risk Assessment for Restricted Irrigation 

Following guidelines recommended by the World Health Organization (WHO) (Mara et al. 2010a; WHO 

2006) and the approach used by Barker et al. (2013b), a QMRA model was developed to estimate the additional 

log10 reduction of NoVGI, RV, and EV required for restricted irrigation with treated wastewater from these two 

systems (i.e. the irrigation of crops that are not eaten raw by humans). Assumptions for the parameters used in the 

QMRA model are provided in Table 4.  
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Table 4. QMRA model parameter assumptions. 

Parameter Units Value or Distribution References 

Concentration of viruses in treated wastewater 

Rotavirus  
concentration  
(ceff_RV) 

copies/mL 

Three-pond system:  
lognorm(1622,3.55) 
UASB-pond system: 
unif(6,11) 

This study 

Norovirus  
concentration 
(ceff_NoV) 

copies/mL 

Three-pond system:  
lognorm(363,1.86) 
UASB-pond system: 
lognorm(219,2.04) 

This study 

Enterovirus  
concentration 
(ceff_EV) 

iu/mL 

Three-pond system:  
0.0037 
UASB-pond system: 
9.1 

This study 

Exposure 

Volume of water ingested 
per day (V) mL 1.0 (Ottoson and Stenström 2003) 

Days of exposure  
per year (n) days 

Adult farmers: 75 
Children at play: 150 

(Mara et al. 2007; Seidu et al. 2008) 

Susceptibility fraction: Sf = 1 – (pr + e · pv) 

Population with 
acquired/genetic 
resistance (pr) 

proportion 
NoV: unif(0, 0.2) 
RV: 0 (children <5) 
EV: 0 

 

Proportion of population 
that is vaccinated (pv) 

proportion 
NoV: 0 
RV: 0.78 
EV: 0 

 
(WHO 2014) 

Vaccine efficacy (e) proportion RV: unif(0.54, 0.79) (Patel et al. 2013) 

Dose-Response models 

Norovirus  
(8fIIa & 8fIIb inocula) 

 

Hypergeometric  
model: α = 0.04,  
β = 0.055, ηNV = 0.00255,  
rNV = 0.086, a = 0.9997 

(Teunis et al. 2008) 

Rotavirus  
“Exact” Beta-Poisson model:  
α = 0.167, β = 0.191 

(Teunis and Havelaar 2000) 

Enterovirus  Exponential: k = 0.00374 (Cliver 1981; Huang 2013) 

Illness:Infection (I) proportion 
NoV:  

 
RV and EV: 0.9 

 
(Teunis et al. 2008)  
(Havelaar and Melse 2003) 

Disease burden (B) 
DALYs  
lost per case of 
illness 

NoV:  
unif(3.71×10-4;6.23×10-3) 
RV:  
unif(1.50×10-2,2.60×10-2) 
EV:  
unif(1.50×10-2,2.4×10-3) 

(Mok et al. 2014) 
 
(Havelaar and Melse 2003;  
Prüss-Üstün et al. 2008) 
(Howard et al. 2007;  
Prüss-Üstün et al. 2008) 
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For restricted irrigation, farmers and children playing in wastewater-irrigated fields have the greatest 

exposure to pathogens (Mara et al. 2007). While NoV, RV, and EV are common disease agents in Bolivia, adult 

farmers are only susceptible to illness from NoV and EV; children may be susceptible to all virus groups (Appendix 

B). Exposure to farmers was modeled, assuming the involuntary ingestion of 1 ml of irrigation water per day, for 75 

irrigation days per year (Ottoson and Stenström 2003; Seidu et al. 2008). Considering children may travel to fields 

while their parents work or play there during non-work days, exposure was also modeled for children, assuming the 

ingestion of 100 mg of soil per day for 150 days per year (Mara et al. 2007, Seidu et al. 2008). The virus dose 

associated with the ingestion of 100 mg of soil was considered approximately equivalent to the dose received from 

ingesting 1 ml of water, based on typical bulk densities and moisture saturation points for agricultural soils in 

Bolivia and the potential adsorption of viruses to soils (Appendix B).  

In some cases, a certain portion of the population may not be susceptible to infection. For this QMRA 

model, the susceptible fraction of the population was defined by the equation  

 Sf = 1 – (pr + e · pv) (1) 

where pr is the proportion of the (non-vaccinated) population with acquired or genetic resistance, pv is the proportion 

of the population that has been vaccinated, and e is the efficacy of the vaccine. 

The WHO has recently recommended that, in developing countries with high existing disease burdens, 

wastewater irrigation should not cause an annual disease burden exceeding 10-4 DALYs per person (Mara et al. 

2010). The disease burden per case of illness (B) was assumed to be uniformly distributed based on a range of values 

reported in the literature (Table 4). The annual disease burden (DB) resulting from illness caused by viral infection, 

expressed in DALYs per person per year, was calculated as 

 DB = Pill·B·Sf (2) 

where Pill is the annual probability of illness, B is the estimated burden of disease per case of illness (DALYs per 

case), and Sf is the susceptible fraction of the population. The annual probability of illness (Pill) was calculated as 

 Pill = 1 – (1 – pill)n (3) 
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where pill represents the probability of illness per day of exposure, and n represents the number of days of exposure 

per person per year. The daily probability of illness was modeled as 

 pill = pinf · pill|inf (4) 

where pinf is the probability of infection per day of exposure (Equations B1 through B3) and pill|inf is the conditional 

probability of illness, given a positive infection (Equations B4 and B5). Previously-published dose-response models 

(Equations B1 and B2) and best-fit values for model parameters were used for NoV and RV (Teunis and Havelaar 

2000, Teunis et al. 2008, see Appendix B). The RV dose-response model was also used as a surrogate dose-response 

model for EV (Schijven and de Roda Husman 2006). For comparison, an exponential dose-response model 

(Equation B3) was also used for EV, with fit parameter k determined using data from a study where pigs were 

challenged with porcine EV type 7 (Cliver 1981, Huang 2013). The dose (λ) was defined as 

 λ = c · V (5) 

where c is concentration and V is volume of water ingested. 

The additional log10 reduction value (LRV) required to ensure that the calculated disease burden is less than 

or equal to 10-4 DALYs per person per year was calculated (Barker et al. 2013b) as 

 LRV = log10(ceff) – log10(c) (6) 

where c represents the maximum tolerable concentration of RV, NoV or EV (estimated using Equations 1 through 5, 

and B1 through B5), and ceff represents the concentration of RV, NoVGI, or culturable EV in the effluent of the two 

WSP systems studied. For NoVGI and RV, where two composite samples were collected in triplicate, the log10-

transformed data was assumed to be normally distributed (Tanaka et al. 1998), with the mean and standard 

deviations equal to the mean and standard deviations of the log10-transformed virus data. In the case of RV, which 

was detected in the UASB-pond system as positive, but below the assay limit of quantification, concentrations were 

assumed to be uniformly distributed between the assay limit of detection and the limit of quantification. The data 

used to develop the dose-response relationships for RV was quantified in terms of focus-forming units (FFU), using 

culture-based methods (Ward et al. 1986). In this study, molecular methods were used to measure RV 

concentrations. In order to correct for this harmonization issue, a genome:FFU ratio of 1000 to 1900 was assumed 
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(McBride et al. 2013; Mok and Hamilton 2014). The data used to develop the dose-response relationships for NoV 

was quantified using the same molecular methods used in this study; therefore, no such adjustment was made. 

Likewise, no harmonization adjustments were made for EV. 

To account for uncertainty and variability in the model parameters, a set of 10,000 random values was 

sampled for each parameter with a distributional assumption, and the 1%, 10%, 25%, median, mean, 75%, 90%, and 

99% values of the maximum concentration satisfying the WHO recommended limit of 10-4 DALYs were calculated. 

All modeling was performed in ‘R’ Version 3.1.0 (The R Foundation for Statistical Computing). A sample of the 

code used is provided in Appendix B. 

 

4.2.3 Results 

4.2.3.1 Culturable Enteroviruses 

The culturable EV results for the wastewater samples are presented in Table 5. A 3.1-log10 removal and 

0.8-log10 removal of culturable EV was observed from the three-pond and UASB-pond systems, respectively. The 

fraction of dry solids in sludge was 14.9% for the UASB reactor and 10.3% in the facultative pond. Sludge samples 

collected from the facultative pond and UASB reactor had infectious EV concentrations of 27 and 2000 infectious 

units (iu)/4 g dry weight, respectively. 

Table 5. Concentration of total culturable enteroviruses (infectious units (iu) per mL) in wastewater from the 
three-pond and UASB-pond systems. 

System Site Site Description Total Culturable 
Enteroviruses (iu/mL) 

Three-Pond 
System 

A Untreated Sewage 4.2E+01 

B Effluent of Facultative Pond 1.1E+00 

D Effluent of Second Maturation Pond 3.7E-02 

UASB-Pond 
System 

F Untreated Sewage 6.2E+01 

G Effluent of UASB Reactor 2.0E+01 

I Effluent of Second Polishing Pond 9.1E+00 

 

4.2.3.2 Molecular Quantification of EAV, NovGI, RV, and PMMoV 

No measurable reduction of NoVGI, RV, and PMMoV genomes was observed in triplicate, composite 

samples from either WSP system using RT-qPCR (Figure 11), with the exception of the ≥1-log10 reduction of RV in 

the UASB-pond system (between sites G and H in Table 3). Concentrations of PMMoV were consistently several 

orders of magnitude higher than concentrations of NoVGI and RV in both systems. Throughout the three-pond 
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system, NoVGI, RV, and PMMoV concentrations remained relatively constant, at approximately 1×103 NoVGI or 

RV copies/ml and 1×106 PMMoV copies/ml. In the UASB-pond system, concentrations of RV decreased to levels 

+BLOQ, while concentrations of NoVGI and PMMoV increased slightly. 
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Figure 11. RT-qPCR derived concentrations of norovirus genotype I (NoVGI), rotavirus group A (RV), and 
pepper mild mottle virus (PMMoV) in the three-pond (left) and UASB-pond (right) systems. All samples with 
an asterisk (*) were positive but below the limit of quantification and consequently, they are displayed as the 
theoretical limit of detection (6 copies/mL). 

4.2.3.3 Virus-Particle Associations 

Overall, the concentrations of NoVGI, RV, and PMMoV detected on the different-sized filters in the 

cascade were much lower than the corresponding concentrations detected in acidified samples captured on 0.45-μm 

filters, which is taken to represent the “total” number of viruses in each sample (Tables 6 – 8). In addition, 

concentrations of all viruses retained on the 180-μm filters were generally lower than the corresponding 

concentrations collected serially on the 0.45-μm and (+) 0.45-μm filters throughout both WSP systems.  

The ratio of viruses retained on each of the filters in the cascade (180-μm, 0.45-μm, and (+) 0.45-μm) to 

those retained on the 0.45-μm filters in the acidified samples indicates the proportion of viruses associated with 

different-sized particles. In both WSP systems, at all sampling locations, the ratios of NoVGI, RV, and PMMoV 

retained on the 180-μm filters to those detected in the acidified samples were generally <5%. In the three-pond 

system, concentrations of all virus types retained on 0.45-μm and (+) 0.45-μm filters were less than half of the 

corresponding concentrations in acidified samples. The ratios of NoVGI and PMMoV detected on 0.45-μm and (+) 

0.45-μm filters to NoVGI and PMMoV detected in the acidified samples were greater in the UASB reactor effluent 

(site G) than they were at all other sample sites in both systems, and these ratios decreased progressively at sample 

sites H and I (the effluent of each subsequent polishing pond). 
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Table 6. Quantities (copies/mL) of norovirus genotype I on a series of filters without acidification and on a 0.45 μm filter after acidification from three 
sample sites within the three-pond and UASB-pond systems. The asterisk (*) indicates <1% extraction efficiencies. 

Three Pond System UASB-Pond System 

Site:Replicate 180 μm 0.45 μm 0.45 μm (+) Acidified 
0.45μm Site:Replicate 180 μm 0.45 μm 0.45 μm (+) Acidified 

0.45μm 
B:1 +BLOQ 1.50E+02 2.60E+02 9.70E+02 G:1 +BLOQ 1.90E+01 +BLOQ * <LOD 
B:2 +BLOQ 8.50E+01 6.60E+01 3.40E+02 G:2 +BLOQ +BLOQ +BLOQ 1.80E+01 
B:3 1.10E+01 3.10E+02 +BLOQ 6.90E+02 G:3 +BLOQ 1.30E+01 <LOD 3.50E+01 
C:1 +BLOQ 1.20E+02 5.20E+01 5.90E+02 H:1 +BLOQ 2.20E+01 <LOD 4.20E+01 
C:2 +BLOQ 5.50E+01 1.50E+01 2.40E+02 H:2 <LOD +BLOQ +BLOQ 7.90E+01 
C.3 1.80E+02 1.30E+02 +BLOQ 3.50E+02 H:3 +BLOQ 3.20E+01 * <LOD 1.40E+02 
D:1 +BLOQ 5.90E+01 <LOD 3.50E+02 I:1 +BLOQ +BLOQ * <LOD 8.70E+01 
D:2 <LOD 1.60E+01 +BLOQ 1.30E+02 I:2 +BLOQ +BLOQ * <LOD 1.80E+02 
D:3 +BLOQ 3.50E+01 <LOD 3.00E+02 I:3 8.20E+01 +BLOQ +BLOQ 1.10E+02 

 

Table 7. Quantities (copies/mL) of rotavirus group A on a series of filters without acidification and on a 0.45 μm filter after acidification from three 
sample sites within the three-pond and UASB-pond systems. The asterisk (*) indicates <1% extraction efficiencies. 

Three Pond System UASB-Pond System 

Site:Replicate 180 μm 0.45 μm 0.45 μm (+) Acidified 
0.45μm Site:Replicate 180 μm 0.45 μm 0.45 μm (+) Acidified 

0.45μm 
B:1 1.60E+02 1.60E+03 4.30E+03 3.10E+04 G:1 <LOD 5.70E+01 <LOD * <LOD 
B:2 4.00E+02 4.90E+02 6.40E+02 1.70E+04 G:2 <LOD 1.70E+01 <LOD 4.30E+01 
B:3 3.40E+01 2.70E+02 2.40E+01 6.40E+03 G:3 <LOD 1.50E+01 <LOD +BLOQ 
C:1 2.60E+02 1.10E+03 8.30E+02 2.20E+04 H:1 <LOD <LOD <LOD <LOD 
C:2 2.20E+02 3.00E+02 4.90E+02 1.50E+04 H:2 <LOD <LOD 5.40E+01 3.30E+01 
C.3 <LOD 1.20E+02 +BLOQ 2.20E+03 H:3 <LOD 2.80E+01 * <LOD 1.50E+01 
D:1 1.60E+02 1.60E+02 <LOD 1.00E+04 I:1 <LOD 1.90E+01 * <LOD 3.00E+01 
D:2 4.50E+01 5.40E+01 <LOD 5.00E+03 I:2 <LOD +BLOQ * <LOD <LOD 
D:3 1.70E+02 1.20E+02 <LOD 1.40E+03 I:3 +BLOQ <LOD <LOD +BLOQ 
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Table 8. Quantities (copies/mL) of pepper mild mottle virus on a series of filters without acidification and on a 0.45 μm filter after acidification from 
three sample sites within the three-pond and UASB-pond systems. The asterisk (*) indicates <1% extraction efficiencies. 

Three Pond System UASB-Pond System 

Site:Replicate 180 μm 0.45 μm 0.45 μm (+) Acidified 
0.45μm Site:Replicate 180 μm 0.45 μm 0.45 μm (+) Acidified 

0.45μm 
B:1 1.97E+03 8.13E+03 1.57E+05 6.48E+05 G:1 6.81E+03 1.65E+05 4.78E+04 * 1.02E+04 
B:2 2.80E+03 2.83E+04 9.35E+04 7.36E+05 G:2 6.76E+03 3.10E+05 1.98E+05 3.67E+05 
B:3 2.42E+03 3.01E+04 2.51E+03 5.31E+05 G:3 1.40E+04 2.05E+05 7.26E+03 2.70E+05 
C:1 1.60E+03 1.60E+04 5.02E+04 6.59E+05 H:1 3.06E+03 2.48E+04 2.00E+02 2.05E+05 
C:2 2.88E+03 3.24E+04 3.55E+04 7.52E+05 H:2 1.14E+03 6.51E+04 1.41E+03 1.75E+05 
C.3 <LOD 2.61E+04 1.58E+03 2.56E+05 H:3 1.02E+03 3.20E+04 * 4.86E+02 3.75E+05 
D:1 1.43E+03 2.55E+04 <LOD 5.75E+05 I:1 1.22E+03 3.31E+04 * <LOD 4.18E+05 
D:2 2.30E+03 1.58E+04 2.58E+02 5.28E+05 I:2 1.42E+03 2.25E+04 * <LOD 2.70E+05 
D:3 6.15E+02 1.85E+04 1.41E+02 4.24E+05 I:3 5.82E+04 4.79E+03 1.29E+03 4.97E+05 
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Despite efforts to minimize contamination during sample collection, minimal contamination was observed 

for a few filter types. In the process blank from the second sampling event (investigating overall system removal), 

NoVGI was observed as positive but below the limit of quantification (+BLOQ), and 2,746 PMMoV copies/ml 

(equivalent to less than 3% of the lowest observed mean concentration detected in other samples) were measured. In 

the process blank for the first sampling event (analyzing virus-particle associations), acidified and non-acidified 

composite samples collected on 0.45-μm filters showed +BLOQ for NoVGI, as well as 4,125 PMMoV/ml and 551 

PMMoV/ml, respectively (still lower than the observed standard deviation). The low levels of contamination 

observed likely arose due to the re-use of filter holders; however, the observed contamination represents a worst 

case scenario because process blanks were collected after sample collection and samples were processed in order of 

most treated (effluent) to least treated (untreated sewage). 

 

4.2.3.4 Quantitative Microbial Risk Assessment for Restricted Irrigation 

The results of the QMRA model are shown in Figure 12. The model demonstrated that, for adult farmers 

irrigating 75 days per year with effluent from the three-pond system, in order to satisfy the recommended limit of 

10-4 DALYs per person per year, the additional required LRV is 0.9 (2.5%: -0.1, 97.5%: 1.6) for NoVGI, and 1.0 

(2.5%: 0.5, 97.5%: 1.2) for culturable EV (based on the RV dose-response curve). For the UASB-pond system, the 

LRV is 0.7 (2.5%: -0.4, 97.5%: 1.4) for NoVGI, but 4.4 (2.5%: 3.9, 97.5%: 4.6) for culturable EV (using the RV 

dose-response curve). If the exponential dose-response curve is used for EV instead of the RV model (Appendix B, 

Figure B3), the predicted LRV is 2.3 (2.5%: 1.8, 97.5%: 2.5) for the UASB-pond system, and <0 for the three-pond 

system (indicating that no further treatment would be required).  

For the scenario of children at play, the QMRA model estimated LRVs for RV of 4.0 (2.5%: 2.8, 97.5%: 

5.2) for the UASB-pond system and 1.7 (2.5%: 1.4, 97.5%: 2.1) for the three-pond system. The magnitude of 

uncertainty associated with the estimates is quite large; the differences between the 2.5% and 97.5% LRVs is as high 

as 2.5 (for RV in the three-pond system). The LRVs for NoV for the two WSP systems were not significantly 

different, but the LRVs for culturable EV for the UASB-pond system were significantly greater than the 

corresponding LRVs for culturable EV for the three-pond system (p < 0.01). Likewise, the LRV for RV for the 

three-pond system was significantly greater than the corresponding LRV for RV for the UASB-pond system. 
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NoV = norovirus; RV = rotavirus; EV = enteroviruses; exp. = exponential; d.r. = dose-response model 

Figure 12. Additional log10 reduction required for treated wastewater to be reused for restricted irrigation a) 
in fields where only adult workers are present and b) in fields where children <5 years are present.  

4.2.4 Discussion 

4.2.4.1 Virus Removal in WSP Systems 

The extent of enteric virus removal measured in the two WSP systems differed depending on whether 

culture- or molecular-based methods were used; little removal was observed using molecular-based methods. Given 

that free viral RNA can disappear within minutes (Limsawat and Ohgaki 1997), it is unlikely that the molecular-

based results were biased by the detection of free viral RNA.  However, it is possible that the qPCR-derived results 

underrepresent NoVGI and RV removal because it does not differentiate between infectious and non-infectious virus 

particles.  Since many viruses are non-culturable (e.g. norovirus) or not easily cultured (e.g. rotavirus), the use of 

complementary culture- and molecular-based approaches allowed for a thorough, short-term investigation of enteric 

virus removal.  
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In contrast to a previous study that reported significant removal of NoVGI genomes in a three-pond system 

with a theoretical hydraulic retention time (HRT) of several weeks (Da Silva et al. 2008), no reduction in NoVGI 

was observed in the two WSP systems here, despite the fact that the theoretical HRTs for these two systems 

exceeded 25 days. Possible explanations for this apparent discrepancy between the treatment efficiencies of the 

three-pond system in France (da Silva et al. 2008) and the three-pond system from this study might include 

differences in wastewater characteristics, hydraulic efficiency, or environmental conditions. Overall removal of total 

suspended solids, five-day biochemical oxygen demand, and chemical oxygen demand in the WSP systems from 

this system (see Chapter 2) was similar to that reported by da Silva et al. (2008); however, the pH levels of the WSP 

systems in this study were generally between 6.5 and 7.5 (data not shown), which are slightly lower than the system 

in France (da Silva et al. 2008).  

To our knowledge, this investigation constitutes the first study of culturable EV removal in a UASB reactor 

system where ponds are used for post-treatment. The removal of culturable EV in the three-pond system (3.1 log10) 

was greater than or equal to enteric virus removal reported in conventional WSP systems from other regions of the 

world (Table 9). Removal of culturable EV in the UASB-pond system from this study was considerably lower, 

despite the similar overall theoretical HRTs of both WSP systems. There was greater removal of culturable EV in 

the facultative pond (between sites A and B) than in the UASB reactor (between sites F and G), which is to be 

expected since the UASB reactor has a much shorter theoretical HRT than the facultative pond (Table 3). However, 

there was less removal of culturable EV in the polishing ponds of the UASB-pond system (0.3-log10 reduction 

between sites G and I) than there was in the maturation ponds in the three-pond system (1.5-log10 reduction between 

sites B and D). This was unexpected, especially considering that the theoretical HRT of the polishing ponds treating 

the UASB reactor effluent was 17 days longer than the theoretical HRT of the maturation ponds treating the 

facultative pond effluent on the day of sampling (Table 3). 

While it is possible that the virus concentrations determined in the UASB-pond system were biased by a 

shorter collection period, it is unlikely that the lack of sample collection overnight (when flow rates are the lowest) 

greatly influenced the results. The volumes collected for the hourly sub-samples were proportional to the hourly 

flow rates measured (i.e. larger samples collected during higher flow rate periods). Rainfall at the UASB-pond 

system on the day of sample collection may have resulted in a slight underestimation in virus concentrations, due to 

dilution. 
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Table 9. Reported reduction of total culturable enteroviruses in pond systems from different locations, 
configurations, and overall hydraulic retention times (HRT; defined as the volume divided by the average 
daily flow rate reported) in comparison to those observed in this study. 

Reference Location Configuration Overall HRT 
(days) Log10 Reduction 

Rao et al. (1981) 

Maharashtra, India Three different pilot-scale ponds 10.8 – 13.5 0.2 – 2.4 

Maharashtra, India Single full-scale pond 17.2 0.9 – 1.9 

Chhattisgarh, India Single full-scale pond 2.7 1.3 – 1.6 

Oragui et al. (1987) Paraiba, Brazil 
Five pilot-scale ponds in series 
(anaerobic, facultative, three 
maturation) 

20.9 3.0 

Bausum et al. (1983) 

Mississippi, USA Two full-scale facultative ponds in 
series 138 2.0 – 3.4 

Mississippi, USA Two full-scale ponds in series  
(facultative, maturation) 72 1.9 – 3.0 

Texas, USA Two full-scale facultative ponds in 
parallel, followed by maturation pond 35.2 1.8 – 2.8 

Texas, USA Two full-scale ponds in series  
(anaerobic, facultative) 24.0 1.0 – 2.1 

South Dakota, USA Two full-scale facultative ponds in 
series 62 1.3 – 2.3 

South Dakota, USA Two full-scale facultative ponds in 
parallel, followed by maturation pond 72 1.3 – 2.7 

This study 
 Sud Yungas, Bolivia 

Three full-scale ponds in series 
(facultative, two maturation) 25.5 3.1 

UASB reactor, followed by  
two polishing ponds in series 26.7 0.8 

 

This study is also the first to demonstrate high concentrations of PMMoV in domestic wastewater in South 

America (105-106 targets/ml). These concentrations are similar to those reported in the United States (Rosario et al. 

2009). The unique dietary origin of PMMoV and its high concentrations make it an attractive surrogate that could 

circumvent the difficulties in molecular detection of seasonally variable and less abundant enteric viruses. As in 

other wastewater treatment systems, PMMoV concentrations did not greatly decrease in the WSP systems in this 

study (Kitajima et al. 2014; Rosario et al. 2009). The lack of PMMoV removal is consistent with the trend in NoVGI 

concentrations, but differs from that of culturable EV, for which decreases were observed. Because little is known 

about PMMoV’s persistence in wastewater or its correlation with infectious enteric viruses, future research is 

needed in order to fully understand the utility of PMMoV as a surrogate for enteric viruses.  
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Given the methodological and logistical challenges of conducting research in a remote region, it was not 

possible to analyze samples over time or under different seasonal or operational conditions. Thus, the extent of virus 

removal observed in this study represents only a temporal snapshot and may not reflect system performance under 

differing conditions. The removal of viruses in ponds is driven by highly complex and heterogeneous physical, 

chemical, and biological processes, which depend upon environmental conditions (e.g. temperature, wind, 

precipitation, sun irradiation) as well as system operation and maintenance. Future research should also examine 

enteric virus removal and particle associations in WSP systems under a variety of environmental and maintenance 

scenarios. Nevertheless, from a water reuse perspective, the virus concentration data were collected at an ideal time 

because June is the driest month and the peak of the irrigation season in this region. Also, RV and NoV outbreaks in 

this region of South America are associated with winter months, with RV peaks common from April to June 

(Romero et al. 2007) and NoV peaks common from June to October (O’Ryan et al. 2010).  

Other methodological constraints may have further influenced the results of this study, possibly leading to 

underestimations of actual virus concentrations using either method. These constraints include sample storage prior 

to analysis and inefficient virus concentration, nucleic acid purification, and reverse transcription. Furthermore, 

variability across sampling sites and/or for different viruses may also have influenced the results. Concentrations of 

NoVGI and PMMoV measured in this system actually increased slightly from the untreated sewage to the treated 

wastewater. This may be a result of variable NoVGI and PMMoV shedding by the community over time. Even 

though samples were composites, the retention times of these systems are several weeks and samples collected on 

the same day at the influent and effluent do not represent the same “plug” of wastewater. This means that the results 

may be affected by the day-to-day heterogeneity of viruses in wastewater.  

 

4.2.4.2 Sedimentation of Viruses in Maturation Ponds 

Overall, a very small proportion of the viruses were associated with particles ≥180 μm throughout the two 

WSP systems. Wastewater flocs with diameters >180 μm could potentially settle to the bottom of the maturation and 

polishing ponds in this study, given their depths and retention times (Appendix B). Thus, this investigation supports 

previous suggestions that sedimentation is not the primary removal mechanism in maturation ponds (da Silva et al. 

2008; Templeton et al. 2008). However, these results also contradict earlier conclusions made by Feachem et al. 

(1983), who stated that viruses adsorb to larger particles that settle to the bottom of ponds, and by Shuval (1990), 
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who reported that up to 90% of viruses could be removed by sedimentation in pond systems. Interestingly, PMMoV-

particle associations in this study were similar to those of NoVGI and RV, suggesting that PMMoV may be a 

suitable surrogate for enteric viruses in particle-association studies. PMMoV-particle associations are easier to 

measure given overall higher concentrations in wastewater (up to 4-log10 greater) compared to NoVGI and RV. It is 

possible that virus isolation and nucleic acid purification may have varied slightly between the different filter types. 

However, it is unlikely that the measured virus-particle associations were heavily biased by filter type (with the 

exception of (+) 0.45-μm filters) in regards to sample RNA yield/efficiency of reverse transcription. 

In almost all samples and sample locations, more viruses were detected on the 0.45-μm and (+) 0.45-μm 

filters than on the 180-μm filters. This suggests that viruses in these WSP systems may be more frequently attached 

to smaller particles, unicellular algae, or bacterial flocs that generally will not settle. Furthermore, these associations 

may actually shield viruses from direct UV inactivation, potentially slowing the disinfection process in maturation 

or polishing ponds. This may be particularly relevant to the UASB-pond system where virus-particle associations 

were greatest in the UASB reactor effluent. The difference in virus-particle associations in the effluent of the 

facultative pond (site B) and the UASB reactor (site G) may be a result of inherent differences in the untreated 

sewage composition in both systems, and shorter HRT of the UASB reactor compared to the facultative pond. 

Alternatively, these observed differences might be an inherent result of the UASB reactor design, which is 

optimized to select for microbial communities that form large flocs and biogranules. Virus removal in the UASB 

reactor may be due to the entrapment of viruses within these flocs and biogranules, while virus removal in the 

facultative, maturation, and polishing ponds may be primarily due to disinfection mechanisms driven by the 

sunlight, not by association with particles and sedimentation. This is supported by the higher concentration of 

culturable EV detected in the UASB reactor sludge compared to the facultative pond sludge. The sludge from the 

UASB reactor had a higher concentration of total solids and a slightly lower fraction of volatile solids than the 

sludge from the facultative pond (Appendix B, Table B4). The volumetric density of culturable EV in the facultative 

pond (based on the total solids and virus concentration per dry weight) is ~0.03 iu/ml, lower than the culturable EV 

concentration from the water sample at point A. In the UASB reactor sludge, the volumetric density of culturable 

EV is ~143 iu/ml, greater than the corresponding concentrations measured in water samples from sites F and G. This 

indicates that viruses in the UASB reactor may have a higher affinity to associate with sludge particles in the UASB 

reactor than they do in the facultative pond. 
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Biogranules in UASB reactors are sensitive to abrupt changes in the composition of wastewater, and may 

suddenly disintegrate without any apparent reason (Liu et al. 2004). If viruses are enmeshed within these granules 

and the granules disintegrate, the viruses may exit the reactor still bound to smaller particles, as suggested by the 

increased virus-particle associations observed at site G. Further investigations of virus-particle associations in WSPs 

and UASB reactors are presented in Section 4.3 of this Chapter. 

 

4.2.4.3 Effluent Risk to Human Health and Potential for Wastewater Reuse 

The effluent of the three-pond system only requires an additional virus reduction of 1- to 2-log10 units, 

which can be easily achieved through the implementation of simple engineered farm-based treatment measures, such 

as on-farm reservoirs or bank filtration systems (Keraita et al. 2014; Silverman et al. 2015). The UASB-pond system 

requires an additional 2.5- to 4.5-log10 reduction of EV, implying that the three-pond system effluent may be more 

suitable for water reuse than the UASB-pond system effluent. 

The results also demonstrate that, despite Bolivia’s vaccination program, risks for RV illness may be 

significant for children at play. In this scenario, both systems would require an additional 3- to 5-log10 reduction of 

viruses. In this study, the same assumptions were made for the disease burden per case of illness (parameter B in 

Table 4) for adult farmers and children at play. The actual disease burden per case of illness may be much higher for 

children than it is for adults, which would mean that the required LRV for the “children-at-play” scenario may 

actually be underestimated. This is an indication that children should not be allowed to play in fields with restricted 

wastewater irrigation. 

While the LRV predictions provide a general idea of the feasibility of water reuse, there are limitations 

associated with the use of QMRA. First, the choice of dose-response model can significantly influence the results. 

The use of a different dose-response model for EV resulted in a difference of 1.8 in the predicted LRVs (Appendix 

B, Figure B3). Second, many of the parameter estimates come from the literature, and may not be representative of 

agricultural practices in Bolivia. For example, the volume of wastewater or soil ingested per day of exposure, and 

the number of days of exposure per year, are contingent upon highly-variable factors that are difficult to verify (e.g. 

climate, crop choice, farmer behavior, etc.). Seidu et al. (2008) assumed that farmers in Ghana may ingest up to 5 ml 

of irrigation water on a given day due to the increased wastewater contact resulting from the use of watering cans.  



www.manaraa.com

76 

In Bolivia, it is common practice for farmers in some regions to chew coca leaves while working, which 

results in increased hand-to-mouth contact and potentially higher viral doses. A sensitivity analysis demonstrated 

that doubling the volume ingested (V) per work day results in an increase of 0.3 for the predicted LRV for NoVGI 

(Appendix B, Figure B2). Another limitation of the QMRA results is that the assumed distributions of virus 

concentrations in the WSP systems come from only two composite sampling events. A NoV or RV outbreak in a 

small town like the ones from this study may significantly increase the LRV required for water reuse, as has been 

demonstrated by Barker et al. (2013b). Nevertheless, by assuming distributions for the concentrations instead of 

point estimates, some of this variability and uncertainty was incorporated into the model and propagated to the results.  

 

4.2.4.4 Possible Implications of UASB Reactors used in Pond Systems 

This investigation highlights the importance of considering potential microbiological quality tradeoffs 

associated with energy recovery versus water reuse, as those tradeoffs may influence the selection of wastewater 

treatment technologies in different contexts. Given the increased popularity of UASB reactors (especially in Latin 

America) and the importance of energy recovery from wastewater (McCarty et al. 2011), additional research is 

needed to fully understand if and why virus removal is less efficient in ponds treating UASB reactor effluent. In this 

short-term investigation, the three-pond system removed culturable EV more effectively than the UASB-pond 

system. A previous study found that the same three-pond system also removed helminth eggs and indicator bacteria 

more efficiently than the UASB-pond system (Section 2.1 of this dissertation). However, other UASB-pond systems 

may provide better pathogen removal than the system from this study. Although the removal of fecal indicator 

organisms is not necessarily indicative of virus removal, overall E. coli reductions of 4- to 5-log10 units have been 

reported for polishing ponds treating the effluent of three different UASB reactor systems (von Sperling and 

Mascarenhas 2005; von Sperling et al. 2005). If reduced viral removal is inherent to UASB-pond systems, it would 

be necessary to determine methods for improving the efficiency of virus removal in these systems.  

 

4.2.5 Conclusions 

• While there was limited removal of virus genome targets in both WSP systems, there was <1-log10 

removal of culturable EV in the UASB-pond system and >3-log10 removal of culturable EV in the 

three-pond system.  
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• There was limited evidence of virus association with particles >180 μm; thus, it is unlikely that 

sedimentation is a major mechanism of virus removal in both WSP systems. 

• Viruses in the effluent of the UASB reactor were more highly associated with particles <180 μm 

than viruses in any other sample location; these particles may protect viruses from UV inactivation 

mechanisms in the subsequent polishing ponds, which may explain the limited removal of 

culturable EV in this system. 

• In order for the effluent from these WSP systems to be safely reused for restricted irrigation (with 

respect to the risk of viral illness to farmers), it would be necessary to reduce virus concentrations 

by an additional 1- to 2-log10 in the three-pond system and an additional 2.5- to 4.5-log10 in 

UASB-pond system. 

• If children play in the irrigation fields, both systems would have to reduce virus levels by an 

additional 3- to 5-log10 units. 

 

4.3 Virus Associations with Particles in Upflow Anaerobic Reactors and Waste Stabilization Ponds 

4.3.1 Introduction 

The removal of viruses in WSPs may occur via several mechanisms, including sunlight-mediated 

inactivation mechanisms (direct and indirect), predation, and sedimentation (see Chapter 3 of this dissertation). 

However, since viruses are too small to settle to the bottom of ponds by themselves, they will only settle when 

associated with larger particles. Despite earlier reports that sedimentation is an important virus removal mechanism 

in ponds (Feachem et al. 1983; Shuval 1990), there is limited evidence that actually documents the importance of 

this mechanism (see literature review in Chapter 3). Furthermore, there have been very few publications about the 

association of viruses with particles in WSPs (Ohgaki et al. 1986; Sobsey and Cooper 1973).  

WSP particles appear to have limited adsorptive capacity for viruses, and the adsorption is likely reversible. 

In one study, 30% of poliovirus inoculated into water from a pilot-scale WSP system in California, USA became 

associated with particles within 3 min (Sobsey and Cooper 1973). The adsorption conformed to a Freundlich 

isotherm, and the proportion of particle-associated viruses remained steady for 122 min, indicating that an 

equilibrium (or pseudo-equilibrium) had been reached. Furthermore, poliovirus maintained infectivity after 45 

minutes of contact with WSP particles, implying that association with these particles was reversible and did not 
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result in a greater rate of inactivation (Sobsey and Cooper 1973). In another study, naturally-occurring coliphages 

(forming plaques on host strain Escherichia coli B) recovered from a small canal receiving effluent from a WSP 

system in Bangkok, Thailand were found to adsorb to microbial particulates harvested from a WSP when samples 

were aerated, and then desorb after aeration ceased and samples became anaerobic (Ohgaki et al. 1986). The 

coliphage concentration in the supernatant (after centrifugation at 12,000 rpm for 10 min) returned to the same 

original concentration, even after two cycles of aeration and no aeration. In facultative ponds, the water surface is 

generally aerobic, but oxygen concentrations decrease with increasing pond depth, meaning that if viruses desorb 

from settleable WSP particles under anaerobic conditions may never make it to the pond sediment before being 

detached from those particles. 

In the study presented in Section 4.2 of this dissertation, and in another recent study from a WSP system in 

France (da Silva et al. 2008), only a very small percentage of human enteric viruses in WSP systems were retained 

on 180 μm filters, suggesting that they may not be susceptible to sedimentation. Greater concentrations of viruses 

passing through 180-µm filters and retained on 0.45-µm and positively-charged 0.45-µm filters were detected in 

samples from the effluent of a UASB reactor, relative to samples from the WSPs (see Section 4.2 of this 

dissertation). 

Finally, though it is not a WSP system, Sima et al. (2011) detected three different strains of norovirus (GI, 

GII, GIV) in wastewater samples entering a membrane bioreactor (from an aeration basin), and in sludge samples 

collected from the membrane, but not in water samples from the effluent of the membrane bioreactor. Based on 

these results, they concluded that the viruses became associated with particles in the aeration basin and as a result, 

were removed by the membrane.  

Microbial activity in WSP particles may result in the production of extracellular proteolytic enzymes that 

have antiviral properties, while association with microalgae in WSPs may actually have a protective effect on 

viruses (Nasser et al. 2002; Sobsey and Cooper 1973). Viruses in WSPs may also be internalized by organisms of 

higher trophic levels, but it is still unclear how or if this affects virus removal or inactivation in WSPs (see Chapter 3 

of this dissertation). Sobsey & Cooper (1973) found that the poliovirus inactivation rate was significantly greater 

when indigenous bacteria and algae from WSPs were grown together in culture than it was when viruses were in 

flasks with only WSP algae, indicating potential antiviral activity associated with bacterial growth. They also found 

that the poliovirus inactivation rate in culture with a particular WSP algal species (Scenedesmus quadricauda) was 
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significantly lower than it was for the control, indicating a protective effect for viruses associated with this species 

of algae (Sobsey and Cooper 1973).  

In summary, there are uncertainties surrounding the importance of sedimentation as a removal mechanism 

for viruses in WSPs; the mechanisms contributing to virus-particle associations; and the overall impact of virus-

particle interactions on virus removal. Because of the high cost associated with virus analysis, wastewater facilities 

are generally not required to comply with effluent discharge limits for virus concentrations (fecal bacterial indicators 

are used instead); however, virus-particle interactions may affect enteric virus removal in wastewater treatment 

systems, as well as the efficacy of downstream disinfection processes. This has important implications for water 

reuse, which is a resource recovery priority that may be more important than energy recovery for small cities and 

towns (see Chapter 2 of this dissertation). Some newer anaerobic technologies that are optimized for energy 

recovery (e.g., the UASB reactor) are intentionally designed to select for microbial communities forming 

biogranules with good settling properties that are retained in the reactor sludge. Based on results reported in Section 

4.2, these sludge particles may entrap viruses, causing them to be present at high concentrations in UASB reactor 

sludge; viruses may also potentially leave reactors associated with smaller, non-settleable particles. Thus, the 

objective of this study was to investigate the association of viruses with particles in domestic wastewater treatment 

systems using WSPs, upflow anaerobic treatment units, or a combination of these technologies. The viruses 

analyzed include AdV, PMMoV, and F+ coliphage.  

 

4.3.2 Materials and Methods 

One mesocosm experiment, and five field studies were carried out in order to investigate the association of 

viruses with particles. The field sites included one pilot-scale and four full-scale wastewater treatment plants. Details 

about the system are provided in Table 10. Treatment units listed in Table 10 are all single units operating in series, 

unless otherwise noted. The first two sites are full-scale WSP systems located in the Yungas region of Bolivia. The 

third site is a full-scale WSP system located in Belding, Michigan, USA. The fourth site is a pilot-scale WSP system 

located at the Universidade Federal de Minas Gerais (UFMG) and Companhia de Saneamento de Minas Gerais 

(COPASA) Center for Research and Training in Sanitation (CePTS) in Belo Horizonte, Brazil. The final site is a 

full-scale wastewater treatment plant located in the state of Minas Gerais, Brazil. 
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Table 10. Information about the wastewater treatment systems. 

System 
(Population Served) 

Treatment Units 
and Dimensionsa 

(L × B × D, meters) 

Average Flow Rate 
(m3 d-1) 

Volumea 
(m3) 

Theoretical 
Retention Time 

(days) 

Yungas WSP System 
(780 people) 

Facultative Pond 
(50 × 27.5 × 1.8) 

121 

2,000 17 

Maturation Pond 1 
(39 × 13 × 1.5) 550 4.5 

Maturation Pond 2 
(39 × 13 × 1.5) 550 4.5 

Overall Theoretical Hydraulic Retention Time 26 days 

Yungas UASB-Pond 
System 

(1,310 people) 

Preliminary Treatment Screening and Grit Chamber 
UASB Reactor 

124 

71 0.6 
Polishing Pond 1 
(60 × 21 × 1.5) 1,540 12 

Polishing Pond 2 
(60 × 23 × 1.5) 1,700 14 

Overall Theoretical Hydraulic Retention Time 27 days 

Belding WSP 
System 

(~5,000 people) 

Preliminary Treatment Screening and Grit Chamber 
Anaerobic Pondb 

(90 × 40 × 3) 

5,640 

11,000 2 

Facultative Pond 1 
(68,800 m2 × 2)c 164,000 29 

Facultative Pond 2 
(360 × 170 × 2) 122,000 22 

Storage Pond 1 
(170 × 160 × 2) 54,000 10 

Storage Pond 2 
(200 × 160 × 2) 63,000 11 

Overall Theoretical Hydraulic Retention Time 74 days 

CePTS UASB-Pond 
System 

(250 person-
equivalents) 

Preliminary Treatment Screening and Grit Chamber 
UASB Reactor 

30 

14 0.5 
Polishing Pond 1 
(25 × 5.3 × 0.8) 105 3.5 

Polishing Pond 2d 
(25 × 5.3 × 0.8) 105 3.5 

Horizontal Rock Filtere 
(25 × 5.3 × 0.8) 15 0.5 

Overall Theoretical Hydraulic Retention Time 8 days 

Minas Gerais  
UASB Reactors 
(~86,000 people) 

Preliminary Treatment Screening and Grit Chamber 
UASB Reactors 
(four in parallel)f 10,500 1,200 (× 4) 0.5 

Overall Theoretical Hydraulic Retention Time 0.5 days 
a  Dimensions are approximate; sludge accumulation is not considered; L = length, B = width, D = depth 
b  This is an upflow anaerobic pond (the influent wastewater enters at the bottom of the pond) 
c  This pond has six surface aerators located near the pond inlet (two were in use at the time of sampling); the pond is also not 

rectangular (surface area and depth reported) 
d  This pond has two longitudinal baffles (all other ponds do not have baffles) 
e More information about the system have been described in detail previously (11), however when that study was published, the 

rock filter only occupied 1/3 of the pond bed. For the present study, the rock filter occupied the entire pond bed. The first 
section of the rock filter contains fine stone, the second contains medium stone, and the third contains coarse stone. 

f Only three were operating at the time of sampling (one had been taken off line for maintenance) 
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4.3.2.1 Field Studies 

Cascade filtration experiments were performed with wastewater samples from all field sites, using different 

combinations of at least two or more of the following 47-mm diameter filters: 180-μm nylon net filter (Millipore, 

Billerica, MA, USA); 10-μm nylon net filter (Millipore); 0.45-μm mixed cellulose ester filter (Type HAWP, 

Millipore); 0.45-μm positively-charged (+) Life-Assure® membrane (Regal-Brown, Daphine, AL, USA); and 0.20-

μm positively-charged (+) Life-Assure® membrane (Regal-Brown). Because of the availability of materials at the 

different field sites, slightly different methods were used at each site (see Table 11). 

Table 11. Cascade filtration experimental designs used for the mesocosm study and at the different field sites. 

System Cascade Filtration Set-Up Final Filtrate 
Analyzed? 

Total Sample 
Concentrations 

Analyzed? 

Virus(es) 
Analyzed 

Yungas Systems 180-µm > 0.45-µm > 0.45-µm(+)d No Yesa AdV 

Mesocosm Study 180-µm Yes (sediment)a Yes 
(supernatant)a PMMoV, AdV 

Belding System 180-µm > 0.45-µm > 0.20-µm(+) Yesb No AdV,  
F+ coliphage 

CePTS System 10-µm Yesa Yesa AdV 

Minas Gerais 
UASB Reactor 

System 

10-µm > 0.45-µm Yesa No AdV 

Centrifugation study also performed to separate 
supernatant from pellet after 10 min at 1157×g No AdV 

a  Samples were acidified and viruses were retained on 0.45-µm filters 
b  Viruses were concentrated from samples using PEG precipitation 
c  PMMoV, norovirus genotype I (NoVGI), and rotavirus (RV) were also previously analyzed in the same cascade filtration 

samples (see Section 4.2 of this dissertation) 
d 0.45-µm (+) filters were not analyzed for AdV, but were analyzed for PMMoV, NoVGI, and RV (see Section 4.2 of this 

dissertation) 
 

The sampling procedure, cascade filtration set-up, sample preservation methods, and nucleic acid 

extraction/purification protocol for samples collected from the WSP and UASB-Pond systems in Yungas, Bolivia, 

were described in Section 4.2. Briefly, the cascade set-up consisted of a 180-μm nylon net filter, a 0.45-μm mixed 

cellulose ester filter, and a 0.45-μm positively-charged (+) Life-Assure® membrane (Regal-Brown). Sample DNA 

was extracted and purified using the AllPrep DNA/RNA Mini Kit (Qiagen, Valencia, CA, USA) with bead-beating, 

as described for the CePTS UASB-Pond system samples, and stored at -20°C until further analysis. Due to 

limitations with access to the site, it was not possible to return to the Yungas WSP systems to collect additional 

samples. 
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Grab samples were collected at the Belding WSP system at the influent and effluent of each of the five 

ponds on 6/22/2014, during four different time points throughout the day (between 10:00 am and 3:00 pm). Grab 

samples from each sample point were composited to form a single sample. These samples were then passed in 

triplicate through the following cascade filtration set-up: 180-μm nylon net filters (Millipore, Billerica, MA, USA), 

0.45-μm mixed cellulose ester (Type HAWP, Millipore), and 0.20-μm positively-charged (+) Life-Assure® 

membrane (Regal-Brown). Viruses in the final filtrate were concentrated by PEG precipitation as described 

previously (da Silva et al. 2008). Briefly, PEG (10% w/v) and NaCl (0.01752 g/mL) were added to each sample, and 

samples were shaken for 60 s, and then stored at 4°C overnight. Lysis reactions were performed directly on each of 

the filters to extract sample DNA as follows: sample filters were aseptically placed into 50-mL centrifuge tubes with 

the sample side pointing inward. Then, 600 μL PBS and 60 μL Proteinase K were added to each centrifuge tube. 

After vortexing for 15 s, 600 μL of Buffer AL was added to each tube and tubes were vortexed again for 0.5 – 2 

min, until the sample appeared to be visually released from the filter. Tubes were spun at 13,000×g for 20 s, then, 

~140 ng of salmon sperm DNA (used as extraction control) were added to each of the samples and to a calibrator 

sample. All tubes were incubated at 56°C on a shaker table for 10 – 15 min, allowing the lysis buffer to wash over 

the filters. Then, 600 μL of ethanol (96–100%) were added to all samples, and samples were pulse vortexed for 15 s, 

and then spun down for 20 s. Liquid from each sample was transferred to clean 2-mL tubes (filters were discarded). 

Tubes were spun at 13,000×g for 5 min to remove sediment and particles and supernatant from all tubes was added, 

700 μL at a time, to spin columns provided in the QIAamp DNA Mini Kit. The manufacturer’s instructions were 

followed from here on. All DNA was stored at -20°C until further analysis. 

Grab samples from the CePTS UASB-Pond system were collected on 3/19/2015, 4/9/2015, 4/23/2015, 

5/14/2015, 5/28/2015, and 6/18/2015, between 9:00 and 11:00 am, from the following four locations: untreated 

sewage (after preliminary treatment); the effluent of the UASB reactor; the effluent of the second (baffled) pond; 

and the effluent of the rock filter. Additional grab samples from the effluent of the second pond and the effluent of 

the rock filter were collected during morning hours on 7/14/2015. Samples collected on 3/19/2015, 4/9/2015, and 

7/14/2015 were concentrated by acidification and adsorption-elution with bead-beating (samples acidified to a pH of 

3.0 to 3.5 with 1.0 M glacial acetic acid, and passed through 0.45-μm mixed cellulose ester filters (Millisul)). 

Viruses from samples collected on the other dates (n=4) were separated into two fractions: those that were retained 

on 10-μm nylon net filters (Millipore), and those that were present in the filtrate from these filters (and concentrated 
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by acidification adsorption-elution on 0.45 μm filters with bead-beating, as described above). All filters were folded 

aseptically, placed in Beadbug tubes with 700 μL of lysis buffer RLT Plus (Qiagen), and stored at -80°C for up to 

six months. Once thawed, samples were subjected to mechanical disruption via bead-beating (Pewee Boxer model 

3115RS-12T-B20, Biospec Products, Bartlesville, OK, USA) for a total of 3 min, in 60 s intervals. After 

centrifugation at 13,000×g for 5 min, sample DNA was purified using the AllPrep DNA/RNA Mini Kit (Qiagen), 

following the manufacturer’s recommended protocol.  

Grab samples were collected from the Minas Gerais UASB Reactor system on 5/26/2015, 6/3/2015, 

6/9/2015, and 6/25/2015, between the hours of 9:00 am and 12:00pm, at the following locations: untreated sewage 

(after screening and grit removal); the effluent of the UASB reactors; the sludge blanket of one of the UASB 

reactors; and the bottom layer of sludge from one of the UASB reactors. Grab samples were collected instead of 

composite samples due to limited access to the site. Samples were transported to the applied microbiology 

laboratory at the Federal University of Itajubá (UNIFEI) and processed the same day, using the following protocol. 

Untreated sewage (40 – 45 mL) and UASB reactor effluent (58 – 125 mL) samples collected on 5/26/2015 and 

6/3/2015 were passed consecutively through a cascade of the following 47-mm diameter filters: 10-μm nylon net 

(Millipore, Billerica, MA, USA) and 0.45-μm mixed cellulose ester (Type HAWP, Millisul, Porto Alegre, RS, 

Brazil). The final filtrate from this cascade was then concentrated via acidification and adsorption-elution with bead 

beating. All filters were added to 2-mL homogenization tubes with 0.1 mm glass beads (BeadbugTM tubes, 

Labscience, Belo Horizonte, MG, Brazil) with 700 μL of Solution PV1 lysis buffer (Biotika, São Paulo, SP, Brazil) 

with 1% β-mercaptoethanol (βME) (Thermo Fisher Scientific, São Paulo, SP, Brazil), and stored at -20°C for up to 6 

weeks.  

Untreated sewage (50 – 70 mL) and UASB reactor effluent (50 – 100 mL) samples collected on 6/9/2015 

and 6/25/2015 were centrifuged at 1,157×g for 10 min with a swinging-bucket rotor. The supernatants were 

acidified and passed through 0.45-μm filters, which were transferred to Beadbug tubes with 700 μL of PV1 lysis 

buffer with βME. The pellets were resuspended in 700 μL of PV1 lysis buffer with βME and transferred to Beadbug 

tubes. UASB sludge blanket samples were diluted to a factor of 0.1 and then 50 mL of this dilution was centrifuged 

at 1157×g for 10 min and the supernatants and pellets were preserved in Beadbug tubes with 700 μL of PV1 lysis 

buffer with βME as described above. Approximately 0.5 mL of bottom sludge samples (~50 mg dry solids) were 

added directly to Beadbug tubes with 700 μL of PV1 lysis buffer with βME. Additional 50-mL aliquots from the 
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untreated sewage and UASB reactor effluent samples collected on 6/25/2015, as well as the 0.1 dilution of the 

UASB sludge blanket sample, were centrifuged at 1157×g for 10 min. After decanting the supernatants, the pellets 

were resuspended in 40 mL of 0.05 M glycine, 3% beef extract (GBE) buffer (pH 9), vortexed for 5 min, and 

centrifuged again at 1157×g for 10 min. The supernatants were acidified, passed through 0.45-μm filters, and the 

filters were transferred to Beadbug tubes with 700 μL of PV1 lysis buffer with βME. The pellets were resuspended 

in 700 μL of PV1 lysis buffer with βME before being transferred to Beadbug tubes. All Beadbug tubes were stored 

at -20°C for up to 6 weeks.  

After thawing, samples were subjected to mechanical disruption for 3 min, in 60 s intervals, with a Mini 

Beadbeater (Biospec Products Model 3110BX, Bartlesville, OK, USA). After centrifugation at 13,000×g for 5 min, 

DNA and RNA in sample supernatant were simultaneously purified using the MoBio PowerViralTM Environmental 

RNA/DNA Isolation Kit (Biotika), and RNA was immediately reverse-transcribed using the Superscript III First 

Strand Synthesis Kit (Invitrogen via Thermo Fisher Scientific) with random hexamers, in accordance with the 

manufacturers’ recommended protocols. All DNA and cDNA were stored at -20°C until further analysis. 

 

4.3.2.2 Mesocosm Study 

An 80-L plastic trash bin was rinsed several times with water from the effluent of the first polishing pond in 

the Yungas UASB-Pond system, and then filled to the top and placed in an ambient temperature outdoor water bath 

next to the pond in an area with sunlight exposure. A 40-mL sample of this water was collected in duplicate as the 

bin was being filled (Day 1). On Day 6, a 40-mL grab sample was collected in duplicate from the supernatant by 

skimming the water surface with a sterile centrifuge tube. A 40-mL sample of the bin sediment was collected in 

duplicate by first siphoning off the supernatant, then homogenizing and collecting the water left at the bottom of the 

bin. Surface samples were immediately concentrated via acidification with 1.0 M acetic acid to a pH of 3.0 to 3.5, 

and adsorption-elution on 0.45-μm mixed cellulose ester filters (Type HAWP, Millipore) with bead-beating. 

Sediment samples were first passed through 180-μm nylon net filters (Millipore), then the filtrates were 

concentrated using acidification and adsorption-elution on 0.45-μm filters with bead-beating. All filters were placed 

in Lysis Matrix E bead tubes (MP Biomedical, Solon, OH, USA) containing 600 μL of lysis buffer RLT plus with 

1% β-mercaptoethanol, as described in Section 4.2. Bead tubes were stored at 4°C in the dark for a week, and then 

stored at -80°C until nucleic acid extraction. Once thawed, samples were subjected to mechanical disruption via 
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bead-beating (Pewee Boxer model 3115RS-12T-B20, Biospec Products) for a total of 3 min, in 60 s intervals. After 

centrifugation at 13,000×g for 5 min to remove filter debris and sample sediments, DNA and RNA were purified 

with the AllPrep DNA/RNA Mini Kit (Qiagen), in accordance with the manufacturer’s recommended protocol. 

RNA was immediately reverse-transcribed using the Superscript III First Strand Synthesis Kit (Invitrogen, Carlsbad, 

CA, USA) with random hexamers, in accordance with the manufacturers’ recommended protocol. All DNA and 

cDNA were stored at -20°C until further analysis. 

 

4.3.2.3 F+ Coliphage Plaque Assay 

The double agar layer (DAL) plaque assay method, performed by Becca Ives and Tim Stieve at Michigan 

State University, was used to measure the concentrations of F+ coliphage in water samples. This assay is based on 

the protocol describe in U.S. Environmental Protection Agency (EPA) Method 1602 (US EPA 2001b). In summary, 

host cells of E. coli Famp (ATCC#700891) were grown to log-phase in a tryptic soy broth (TSB) culture with 

ampicillin and streptomycin. Then, 0.5 mL of these host cells and 2 mL of the samples or sample dilutions were 

added to 1.5% tryptic soy agar (TSA) overlay tubes, tempered in a 50°C water bath. The tubes were mixed by 

rolling between palms and then the contents dispensed immediately onto pre-hardened 1.5% TSA plates, which were 

swirled to evenly distribute the overlay. After 10 to 15 minutes, when the agar overlay was set, the plates were 

inverted and then incubated overnight at 36 ± 1.0°C. After 16 – 24 h of incubation, plates were removed and circular 

zones of clearing in the bacterial host lawn were counted as plaque-forming units (pfu). Concentrations were 

calculated using average plaque counts from five replicate plates using the dilution that produced between 20 and 

200 pfu per plate. Precision and recovery, method blanks, positive and negative process controls, TSA plate 

controls, and TSA plate plus overlay tube controls were analyzed for quality assurance and quality control (US EPA 

2001b).  

 

4.3.2.4 Molecular Methods 

Quantitative PCR with reverse transcription (RT-qPCR) was used to measure concentrations of PMMoV in 

cDNA samples, using a previously-published assay (Rosario et al. 2009) with primers (5’ to 3’) GAG TGG TTT 

GAC CTT AAC GTT TGA (forward), TTG TCG GTT GCA ATG CAA GT (reverse), and probe [FAM]CCT ACC 

GAA GCA AAT G[TAMRA]. The 25-μL reaction mixtures contained 400 nM of each primer, 125 nM of probe, 
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and Taqman Environmental Master Mix 2.0 (Life Technologies, Grand Island, NY, USA) at a final concentration of 

1×. A quantitative PCR (qPCR) assay was used to measure concentrations of AdV, using previously-published 

primers (5’ to 3’) GGA CGC CTC GGA GTA CCT GAG (forward), ACI GTG GGG TTT CTG AAC TTG TT 

(reverse) and probe, [FAM]CTG GTG CAG TTC GCC CGT GCC A[MGBNFQ] (Jothikumar et al. 2005). The 20-

μL reaction mixtures contained 250 nM of each primer, 150 nM of probe, and Taqman Environmental Master Mix 

2.0 at a final concentration of 1×.  

Using the ABI7500 Real Time PCR System (Life Technologies), 2-μL samples were analyzed in duplicate, 

and in order to identify (RT-)qPCR inhibition, an additional replicate for each sample was spiked with 6×105 copies 

of purified pIDTSMART plasmids with ampicillin resistance (Integrated DNA Technologies, Coralville, IA, USA), 

containing the corresponding target sequences for AdV 40 and PMMoV (plus 6 bp extra on each side), derived from 

GenBank sequences (AdV: accession number L19443.1; PMMoV: accession number AB550911.1). The (RT-

)qPCR cycling conditions were as follows, with data collected on the elongation step: 95°C for 10 min, then 45 

cycles of 95°C for 30 s, 53°C for 1 min, and 72°C for 1 min (for PMMoV RT-qPCR); 95°C for 10 min, then 40 

cycles of 95°C for 15 s, 55°C for 20 s, and 60°C for 1 min (for AdV qPCR). Data from the (RT-)qPCR were 

analyzed using the 7500 software v2.0.6 (Life Technologies), with the default settings, to determine the 

quantification cycle (Cq) values for each qPCR well. The threshold values were set to 0.05 (for AdV) and 0.04 (for 

PMMoV). 

The qPCR process limit of detection (pLOD), defined as the lowest concentration at which amplification 

occurs before 40 cycles for 95% of positive sample replicates (i.e., the concentration for which <5% failed reactions 

occur), was determined using an exponential survival function with standard curve data (see Appendix C), following 

methods used to derive parameters for dose-response models (Haas et al. 2014). If the measured fluorescence for a 

sample did not pass the threshold value before 40 cycles, the sample was labeled as “NA” or “no amplification 

observed”, and the concentration was considered to be lower than the limit of detection (<LOD). 

For a subset of samples with AdV concentrations below the qPCR process limit of detection (pLOD), a 

nested polymerase chain reaction (PCR) assay was used to determine the presence or absence of AdV, with the 

following previously-published primers (Allard et al. 1992) (5’ to 3’): GCC GCA GTG GTC TTA CAT GCA CAT 

C (forward, round 1), CAG CAC GCC GCG GAT GTC AAA GT (reverse, round 1), GCC ACC GAG ACG TAC 

TTC AGC CTG (forward, round 2), TTG TAC GAG TAC GCG GTA TCC TCG CGG TC (reverse, round 2). The 
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25-μL reaction mixtures contained 1000 nM of each primer, and GoTaq® Green Master Mix (Promega, Madison, 

WI, USA) at a final concentration of 1×. Cycling conditions (for both cycles of the nested AdV assay) were 4 min at 

94°C, followed by 40 cycles of 92°C for 30 s, 60°C for 30 s, and 72°C for 1 min and a final incubation step at 72°C 

for 5 min. 5 µL of the product from the first round of PCR was used as a template for the second reaction. 15 µL of 

the final PCR products were added to a 2% agarose gel with ethidium bromide and analyzed using electrophoresis 

for a total of 90 min at 80 – 90 V. A positive control (untreated sewage), a negative (blank) control, and 100 bp 

DNA ladders (ThermoFisher Scientific, Grand Island, NY, USA) were analyzed simultaneously with samples. This 

nested PCR assay can detect as few as 100 copies per reaction (Symonds et al. 2009). 

 

4.3.3 Results and Discussion 

4.3.3.1 Yungas WSP and UASB-Pond Systems 

The data from the Yungas WSP and UASB-Pond systems for AdV are summarized in Table 12, and the 

data for NoVGI, RV, and PMMoV are summarized in Tables 6, 7, and 8, respectively (Section 3.2). Samples were 

collected serially on 180-μm, 0.45-μm, and positively-charged (+) 0.45-μm filters to separate viruses associated with 

different-sized UASB and WSP particles. The data reported here for AdV are from the same DNA used for reverse 

transcription and detection of RV, NoVGI, and PMMoV, with the only exception that the 0.45-μm (+) filter samples 

were not analyzed for AdV due to the low recovery of the DNA extraction and purification control (see Appendix 

E). The concentrations of PMMoV, RV, and NoVGI retained on 180-μm filters were generally less than 5% of the 

corresponding concentrations detected in acidified samples captured on 0.45-μm filters (assumed to be the total 

concentrations in the samples), and were also lower than the corresponding concentrations retained on the 0.45-μm 

and 0.45-μm (+) filters from the cascade (see Section 4.2.3.3). The concentrations of AdV retained on 180-μm filters 

were all below the pLOD for all samples, except for all three sample replicates collected from the effluent of the 

UASB reactor (and one of three replicates from the second polishing pond in the Yungas UASB-Pond system).  

Concentrations of NoVGI and PMMoV retained on 0.45-μm and 0.45-μm (+) filters were greater in the 

UASB reactor effluent than they were in all of the pond samples from both systems (see Section 4.2.3.3), indicating 

the possibility that viruses leaving the UASB reactor were more likely to be associated with small (<180 μm) 

particles than viruses in the WSPs. However, the AdV concentrations retained on 0.45-μm filters from the cascade 

(receiving filtrate from the 180-μm filters) for the UASB reactor sample were only slightly greater than they were at 
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other sample sites, and were also similar to the corresponding concentrations on 0.45-μm filters from acidified 

samples. This was not the case for PMMoV, which could indicate that AdV may be more associated with particles 

than PMMoV. Also, contrary to PMMoV, RV, and NoVGI, AdV leaving the UASB reactor was more associated 

with particles larger than 180 μm. 

Table 12. Log10-transformed quantities of human adenovirus (copies mL-1) retained serially on a cascade of 
180-μm and 0.45-μm filters without acidification, and on a 0.45-μm filter after acidification, from three 
samples points each in the Yungas WSP and UASB-Pond systems. Mean values of log10-transformed sample 
triplicates are shown in bold and in parentheses. Concentrations marked with an asterisk (*) are below the 
process limit of detection. NA = no qPCR amplification. † 

WSP (Three-Pond) System 

Sample Site 180 μm 0.45 μm 0.45 μm 
(acidified) 

Facultative Pond 
1.8* 

(2.2) 
3.2 

(3.9) 
3.8 

(3.7) 1.9* 4.1 3.1 
3.0* 4.4 4.2 

Maturation Pond 1 
2.4* 

(2.3) 
4.2 

(4.1) 
3.5 

(3.4) 2.2* 4.1 2.6* 
2.5* 4.0 4.2 

Maturation Pond 2 
2.1* 

(1.9) 
3.3 

(3.8) 
3.0* 

(3.4) 1.5* 3.9 3.1 
2.0* 4.2 4.0 
UASB-Pond System 

Sample Site 180 μm 0.45 μm 0.45 μm 
(acidified) 

UASB Reactor 
3.1 

(3.4) 
4.0 

(4.6) 
3.4 

(4.2) 3.4 4.8 4.6 
3.9 5.2 4.6 

Polishing Pond 1 
1.6* 

(1.9) 
3.7† 

(4.2) 
3.1 

(3.8) 1.8* 4.4 3.9 
2.2* 4.4 4.2 

Polishing Pond 2 
NA† 

- 
2.8*† 

(3.3) 
2.6* 

(3.2) 1.8* 3.7 3.6 
3.7 3.4 3.5 

† Recovery of extraction control was between 1% and 10%. 

4.3.3.2 Mesocosm Study 

In order to further study particle associations and the settling of viruses in WSP water, a mesocosm study 

was carried out at the Yungas UASB-Pond system. The results of the mesocosm study are shown in Figure 13. At 

the beginning of the experiment, the average AdV concentration in the WSP water was 1.5×104 copies mL-1. After 
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five days, the concentration of AdV retained on 180-μm filters from the sediment sample was 8.2×102 copies mL-1, 

and the average concentration passing through this filter was 2.5×103. The concentration in the supernatant was only 

2.7×102 copies mL-1. The measured Day 6 concentrations were all close to the assay pLOD; concentrations in the 

two sediment samples were slightly above this limit, while the concentration in the supernatant sample was slightly 

below it. Given that the virus counts in the two sediment samples are cumulative (filtration was performed in series), 

the sum of the two measured AdV concentrations on Day 6 in the sediment samples is only 0.6-log10 lower than the 

initial concentration on Day 1, and was greater than the concentration in the supernatant. The PMMoV results 

showed a different trend. On Day 1, the PMMoV concentration in the mesocosm was 3.8×104 copies mL-1, and after 

five days, the concentration in the supernatant was nearly the same (4.7×104 copies mL-1). The concentrations in the 

sediment samples, however, were two or more orders of magnitude lower.  

 
Figure 13. Mesocosm experiment results for adenovirus and pepper mild mottle virus. Error bars represent 
standard deviations from duplicate samples (duplicate samples were not analyzed for non-acidified sediment 
samples retained on 180-μm filters; these data represent single samples, and thus they have no error bar). 

Thus, AdV genome targets were either removed or degraded more than PMMoV genome targets. Also, 

particle-associated AdV may also have been removed via sedimentation, or alternatively, AdV at the water surface 

may have degraded more rapidly than AdV at the bottom of the mesocosm. However, PMMoV likely did not settle 

in this mesocosm, and its genome did not degrade at the water surface after five days. PMMoV genome targets 

appear to have degraded more rapidly at the bottom of the mesocosm than they did at the surface. Based on these 

results, PMMoV may be a conservative surrogate for AdV transport at the surface of WSPs, but not necessarily in 

pond sediments.  
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4.3.3.3 Belding WSP System 

The AdV concentrations measured in the cascade-filtration samples collected at the Belding WSP system 

are presented in Table 13. DNA extraction efficiencies, as measured by Salmon Sperm DNA recovery (Appendix E) 

were all greater than 1%, and with the exception of a few samples from the untreated sewage, anaerobic pond, and 

final two storage ponds, were all above 10% (see Table 13).  

Table 13. Log10-transformed quantities of human adenovirus (log10(copies) mL-1) retained serially on a 
cascade of 180-μm, 0.45-μm, and positively-charged (+) 0.20-μm filters and in the PEG-concentrated final 
filtrate, for samples from the Belding WSP system. Mean values of log10-transformed sample triplicates are 
shown in bold and in parentheses. If mean values were estimated using the survival model, they are shown in 
parentheses and in italics, but not in bold. NA = no qPCR amplification. 

Sample Site 180 μm 0.45 μm 0.20 μm (+) 
PEG-

concentrated 
final filtrate 

Influent (Untreated Sewage) 

1.5*† 

(1.7) + 

2.2*† 

(2.6) + 

1.8* 

(2.0) + 

2.6* 

(2.5) + 1.6*† 2.8 2.0* 2.3* 

NA 2.9 2.1* 2.5* 

Upflow Anaerobic Pond Effluent 

1.5* 

(1.9) + 

4.5 

(4.3) + 

1.7* 

(3.6) + 

2.2* 

(3.3) + NA† 4.2 4.6 3.9 

2.4* 4.3 4.6 3.7 

Facultative Pond 1 Effluent 

NA 

(1.3) + 

1.8* 

(2.3) + 

1.7* 

(2.0) + 

NA 

(1.2) NA 1.6* 1.7* NA 

1.7* 2.4* 1.7* 0.4* 

Facultative Pond 2 Effluent 

NA 
+ 

1.2* 

(1.3) 

NA 

 

2.2* 

(1.6) + NA NA NA 1.4* 

NA NA NA NA 

Storage Pond 1 Effluent 

1.7* 

(1.1) 

2.4*† 

(2.0) + 

NA 

 

1.4* 

(1.5) NA† NA† NA NA 

NA NA† NA NA 

Storage Pond 2 Effluent  
(Final Discharge) 

NA 

 

NA† 

 

NA 

(1.3) + 

NA 

 NA NA† NA NA 

NA NA 0.8* NA 
* Below the process limit of detection 

+ Positive signal detected via nested PCR 
† Recovery of extraction control was between 1% and 10%. Recovery was > 10% for all other samples. 

 

The AdV concentrations retained on 180-μm filters were all below the pLOD, but still showed qPCR 

amplification for one or two out of three replicates from four out of the six sample locations. Red water mites were 

visibly observed in the samples from the effluent of Storage Pond 1, and appeared to be the only material retained on 
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the 180-μm filter from that sample. Untreated sewage samples yielded a mean log10-transformed concentration of 

2.6 on the 0.45-μm filter, and 2.5 in the PEG precipitate of the final filtrate (though both mean values were below 

the pLOD). Concentrations retained on the 180-μm and 0.20-μm (+) filters from untreated sewage samples were also 

below the pLOD, but were estimated to be approximately 1.7 log10 units based on the survival function (Appendix 

C). The highest AdV concentrations were detected in the anaerobic pond effluent, retained on 0.45-μm and 0.20-μm 

(+) filters. The anaerobic pond effluent was also the only location where AdV was consistently detected at levels 

above the pLOD. This may be an indication that the anaerobic pond is causing a large proportion of AdV to become 

associated with small (<180 μm) and possibly negatively-charged or colloidal particles.  

The results for F+ coliphage for samples collected from the Belding WSP system are presented in Figure 

14. All negative controls, including 100-mL samples of phosphate-buffered water passed through the filtration 

equipment after washing and disinfecting filter holders and Erlenmeyer flasks (a test for cross-contamination 

between samples), resulted in the absence of plaque-forming units. Initially, the positive (spot plate) and precision 

and recovery (spiked) controls failed (no plaque-forming units or blotches detected after incubation). However, after 

a second run, the positive control passed (blotches were present), and the precision and recovery control yielded a 

concentration of 3.7 pfu mL-1, which is approximately half of the concentration in the spiked reagent water used for 

the test (i.e., ~50% recovery).  

In the wastewater samples, F+ coliphage was only detected at quantifiable concentrations (>10 pfu per 

plate) in samples from the untreated sewage, the anaerobic pond, and the first facultative pond. In samples from the 

effluents of the second facultative pond and the first storage pond, F+ coliphage was detected at concentrations < 1 

pfu mL-1. At the final effluent and discharge point (effluent of Storage Pond 2), F+ coliphage was not detected at 

all—the total concentration in this sample was < 0.1 pfu mL-1, meaning that the overall removal was greater than 

3.2-log10 units. The fractions of F+ coliphage concentrations measured in filtrates from the different filters were very 

similar for the samples from the untreated sewage, anaerobic pond, and first facultative pond samples, indicating 

that F+ coliphage-particle associations may not have changed much in the anaerobic and facultative ponds. 

Furthermore, differences in the log10 reductions in concentrations in the filtrates from each of the different filters 

were not significant, meaning that F+ coliphage inactivation rates in the first two ponds were probably similar for 

coliphage retained on each of the filter sizes, and for the coliphage passing through the final 0.20-μm (+) filter.  
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Figure 14. F+ coliphage concentrations in unfiltered samples and in the consecutive filtrates of 180-μm, 0.45-
μm, and positively-charged 0.20-μm filters, from samples of untreated sewage and from the effluent of each 
pond in the Belding WSP system. Error bars represent standard deviations of 5 replicates. ND = not detected. 

When comparing results for AdV and F+ coliphage, it is important to note that there are fundamental 

differences in the data based on the methods that were used, notably that the methods used to detect and quantify 

AdV (nested PCR and qPCR) do not distinguish viable viruses from non-viable ones, and the method used to 

quantify F+ coliphages (double agar layer plaque assay) only measures viable coliphages that are capable of forming 

plaques on the lawn of E. coli Famp strain (ATCC #700891).  

 

4.3.3.4 CePTS UASB-Pond System 

The results of the CePTS UASB-Pond system samples are presented in Figure 15. In the untreated sewage 

samples, the concentrations of AdV retained on the 10-μm filters and passing through the 10-μm filters were similar. 

However, while the concentrations passing through the 10-μm filters from the UASB reactor, second pond effluent, 

and rock filter effluent samples were all above the pLOD, the concentrations retained on the 10-μm filters reduced 

throughout the treatment train. The difference between the median log10-transformed AdV concentration retained on 

the 10-μm filters in the untreated sewage and the median log10-transformed AdV concentration retained on the 10-

μm filters in the rock filter effluent is 3.4 (log10 units). The difference between the same two points for the 10-μm 

filter filtrate (viruses passing through the 10-μm filters) is only 1.0 log10 units. This indicates that many of the AdV 

that are associated with particles greater than 10 μm are either settling to the bottom of the ponds, or are degrading 

more rapidly than the non-particle-associated AdV and the AdV associated with particles smaller than 10 μm. 
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Figure 15. Total human adenovirus concentrations (copies mL-1) (left); and human adenovirus concentrations retained on 10-μm filters and in the 
filtrate from the 10-μm filters (right), in samples from the untreated sewage, UASB reactor effluent, second pond effluent, and rock filter effluent. 
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4.3.3.5 Minas Gerais UASB Reactor System 

The results of the Minas Gerais UASB reactor system samples are presented in Figure 16. For the cascade 

filtration study, the concentrations of AdV detected on the 10-μm and 0.45-μm filters for the untreated sewage and 

UASB reactor effluent samples were similar. However, the concentration detected in the final filtrate for the UASB 

reactor sample was approximately an order of magnitude greater than the corresponding concentration in the final 

filtrate of the untreated sewage sample. This implies that AdV in wastewater leaving this UASB reactor may be less 

associated with particles than AdV in the untreated sewage.  

 

Figure 16. Concentrations of human adenovirus a) retained on a cascade of filters: 10-μm filters, 0.45-μm 
filters, and in the final filtrate (final filtrate acidified and viruses retained on 0.45-μm filters); and b) in 
sample supernatants and pellets after centrifugation at 1,157×g for 10 min, for samples from the Minas 
Gerais UASB reactor system. The circles represent the geometric mean concentration and the error bars 
represent the minimum and maximum concentrations measured. “Post-GBE” refers to the supernatant and 
pellet portions separated from the original pellet, after resuspension 40 mL of 0.05 M glycine, 3% beef extract 
(GBE) buffer 

After centrifugation at 1,157×g for 10 min, the proportions of AdV detected in sample supernatants 

compared to the pellets were similar for the untreated sewage and UASB reactor samples. The overall 

concentrations in the untreated sewage were slightly lower than the overall concentrations in the UASB reactor 

effluent, however this may have been because grab samples were collected instead of composite samples. The 

overall rate of AdV entering the wastewater treatment plant in the untreated sewage may fluctuate throughout the 

day, depending on how many people with AdV infections are discharging wastewater to the sewerage system at a 
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given time. The proportion of AdV in the supernatant of the sludge blanket sample after centrifugation was much 

lower, compared to the concentration detected in the pellet. Not surprisingly, the concentrations of AdV detected in 

the supernatants of the UASB reactor sludge blanket sample and the sample from the effluent of the UASB reactor 

were similar. Viruses not attached to settleable particles, in the liquid fraction of the water in the UASB reactors 

would be expected to exit through the outlet at the top of the reactor. Interestingly, the geometric mean 

concentration of AdV in the final filtrate of the UASB reactor samples was similar to the AdV concentrations in the 

supernatants of the samples from the UASB reactor sludge blanket and the UASB reactor liquid effluent, after 

centrifugation. According to Stoke’s law, assuming a particle density of 1,200 g L-1, the centrifugation conditions 

used in this experiment should separate out all particles larger than 1.2 μm, which is not much larger than the 0.45-

μm pore size of the filter. One possible explanation for the greater concentration of AdV in the final filtrate from the 

UASB reactor effluent samples is that the viruses may be desorbing from wastewater particles when exposed to the 

anaerobic conditions, as reported previously for coliphage and WSP particles (Ohgaki et al. 1986). However, it is 

plausible that some AdV are still entrapped within small flocs or granular sludge, and therefore exiting the UASB 

reactor associated with particles that are too small to settle, as was observed in the Belding system (Section 4.3.1.3, 

Table 13). 

After resuspension of sample pellets in the GBE buffer and a second round of centrifugation at 1,157×g, 72 

to 77% of AdV in the untreated sewage sample pellets and 78 to 85% of AdV in UASB blanket sludge sample 

pellets were desorbed and recovered in the supernatant after the second round of centrifugation. On the contrary, for 

the UASB reactor effluent sample pellet, the percentage recovered in the supernatant after the second round of 

centrifugation was only 45 to 47%. This might be an indication that AdV-particle associations in untreated sewage 

and UASB granular sludge were largely reversible, while approximately half of particle-attached AdV exiting the 

UASB reactor exhibited non-reversible adsorption to these smaller particles. 

The median volumetric concentration of AdV in samples collected from the bottom sludge layer in the 

UASB reactor is 2.6×107 copies mL-1, which is one order of magnitude greater than the median sum of AdV 

concentrations in the pellets and supernatants from the UASB reactor sludge blanket samples. This is an indication 

that AdV is indeed enmeshed within UASB granular sludge and a fraction of the viruses are removed from the 

reactor in the sludge. In the Minas Gerais UASB reactor system, sludge was discharged to an open sludge drying 

bed with a pervious floor that allowed drain water to percolate out of the sludge, allowing the sludge to become 
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desiccated. While samples of the sludge drying bed drain water were not collected for this study, the higher 

concentration of AdV in UASB reactor sludge demonstrates the possible need for treatment or disinfection of sludge 

and drying bed drain water from these systems. 

 

4.3.3.6 Implications for Wastewater Treatment, Resource Recovery and Future Research 

In summary, the results from the mesocosm study and the field studies of virus-particle associations 

demonstrate that UASB reactors and WSPs affect virus-particle associations in potentially different ways, and this 

effect may be different for different virus types (see Table 14). While PMMoV detected in the effluent of the 

Yungas UASB reactor and WSP mesocosm was more associated with smaller particles and showed no indication of 

settling, AdV in the effluent of three different UASB reactors was associated with small and large particles, and 

showed evidence of possible settling in downstream WSPs. PMMoV genome targets appeared to degrade more 

rapidly in pond sediments than they did at the pond surface. Also, AdV genome targets were more volumetrically 

concentrated in UASB reactor sludge than they were in UASB reactor influent and effluent water samples, which 

indicates that AdV may become entrapped in granular UASB reactor sludge; culturable EV was also found to be 

more volumetrically concentrated in UASB sludge than it was in WSP sediments and in wastewater samples from 

the UASB reactor effluent or any of the WSPs from the two Yungas systems (see Section 4.2). Viruses are likely 

removed from UASB reactors when sludge is evacuated. As such, precautions should be taken when handling 

UASB reactor sludge.  

The results of the centrifugation study for samples collected from the Minas Gerais UASB reactor system 

indicate that AdV particle-associations in the liquid effluent of UASB reactors may be less reversible than the AdV 

associations with granular sludge suspended in the UASB sludge blanket. Some of the particle-associated AdV in 

untreated sewage may also dissociate under anaerobic conditions in UASB reactors, which follows observations 

made by Ohgaki et al. (1986) for indigenous coliphage from a WSP system in Thailand. WSPs and UASB reactors 

may create conditions that alter the surface properties of wastewater solids or the ionic conditions in the water, 

which could in turn, affect virus-particle adsorption (Sobsey and Cooper 1973). The concentrations and 

characteristics of suspended solids in these systems can also affect virus-particle adsorption. The average total 

suspended solids (TSS) concentration in the untreated sewage from the Belding WSP system during the month of 

sample collection was 145 mg L-1 (SD = 56), while the average TSS concentration in the anaerobic pond effluent 



www.manaraa.com

97 

was 43 mg L-1 (SD = 6.4), and this concentration decreased throughout the system, with a concentration of only 3.9 

mg L-1 (SD = 1.3) in the final effluent of storage pond 2. In the Yungas WSP system, TSS concentrations were 

similar, with 240 mg L-1 in the influent, 53 mg L-1 in the facultative pond effluent, 50 mg L-1 in the effluent of the 

first maturation pond, and 36 mg L-1 in the effluent of the second maturation pond. However, TSS concentrations in 

the two UASB-Pond systems studied were greater, with average TSS concentrations of 83 mg L-1 and 74 mg L-1 

detected in the effluents of the UASB reactors of the Yungas and CePTS systems, respectively. AdV in the UASB-

Pond system were also more highly-associated with particles than AdV in the Belding WSP system, but it is unclear 

if the higher TSS concentrations had anything to do with this. 

The results from the particle-association studies presented here have important implications for wastewater 

treatment and resource recovery from WSP systems. Viruses that are not removed from WSP systems, and retain 

viability, can present a risk for farmers using the treated wastewater for irrigation, or for vendors and consumers of 

wastewater-irrigated crops. The sedimentation of viruses in WSP systems does not appear to be an important 

mechanism for removal. However, when UASB reactors are incorporated at the beginning of WSP systems, some 

viruses, such as AdV, may be removed more readily, possibly via sedimentation. Other viruses, such as PMMoV, 

may not. AdV that is in closer proximity to small, non-settleable particles may be vulnerable to capsid damage 

caused by indirect sunlight mechanisms. A previous study found that AdV capsid proteins are damaged by reactive 

intermediates formed when sunlight interacts with sensitizer molecules in wastewater (Bosshard et al. 2013). On the 

other hand, small non-settleable particles may protect viruses from direct sunlight inactivation. The qPCR methods 

used to detect AdV in this study only measure the quantity of a targeted region of virus genomes present in the 

samples. The quantities measured likely provide an over-estimation of the quantities of viable AdV.  

To better understand the nature of virus-particle associations in UASB reactors, the objectives of future 

work should be to determine if virus-particle adsorption is reversible, results in loss of viability, or protects the virus 

from inactivation or disinfection mechanisms. It is also important to understand if aggregated or particle-associated 

viruses leaving UASB reactors pose different risks than dispersed (non-aggregated, non-particle-associated) viruses, 

since infectivity may change based on the virus’ state of aggregation. For example, aggregated norovirus in an 

inoculum used in a human volunteer study was found to have a higher infectious dose than disaggregated (dispersed) 

norovirus in a different inoculum (Teunis et al. 2008). 
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Table 14. Summary of results and potential implications for wastewater treatment and resource recovery. 

System Methods Summary of Results Possible Implications 

Yungas WSP 
System 

Cascade filtration:  
180-µm > 0.45-µm > 0.45-µm (+)a 

PMMoV, RV, and NoVGI in UASB reactor effluent more 
highly-associated with particles <180 μm (Section 4.2); high 

AdV concentrations retained on 180-μm filter in UASB reactor 
effluent; minimal change in concentrations of PMMoV, NoVGI, 
and AdV throughout system; RV detected in UASB reactor but 

not in polishing ponds 

• Virus removal via sedimentation appears 
to be unlikely for PMMoV in particular 

• AdV in UASB reactor effluent are more 
associated with particles >180 μm; 
PMMoV, RV, and NoVGI are more 
associated with particles <180 μm 

Yungas 
UASB-Pond 

System 

Mesocosm 
Experiment 

Separation of supernatant and sediment by 
gravity for 5 days; supernatant analyzed 
separately and sediment analyzed with 
cascade filtration: 180-µm > filtrateb 

PMMoV concentration in supernatant on Day 6 was similar to 
overall concentration on Day 1, but PMMoV concentrations in 
sediment were more than an order of magnitude lower; AdV 

concentration in the supernatant on Day 6 was several orders of 
magnitude lower than the overall concentration on Day 1, and 

lower than concentration in the sediment on Day 6. 

• AdV may attach to particles and settle 
under quiescent conditions 

• PMMoV appears to not settle 
• PMMoV genome targets may degrade 

faster in WSP sediments 

Belding 
System 

Cascade filtration:  
180-µm > 0.45-µm > 0.20-µm (+)  

> filtrateb 

Concentrations of F+ coliphage passing through to the final 
filtrate were similar for untreated sewage and anaerobic pond 
samples; F+ coliphage concentrations in unfiltered samples 

similar to concentrations passing through 180-µm filters; high 
AdV concentrations on 0.45-µm, 0.20-µm (+) filters and in final 

filtrate for anaerobic pond samples 

• F+ coliphages were removed within first 
three ponds 

• AdV in the anaerobic pond effluent may 
be largely associated with particles <180 
μm and unassociated (dispersed) 

CePTS 
System 

Cascade filtration:  
10-µm > filtratec 

Concentrations of AdV retained on 10-µm filters decreased 
progressively throughout the system (>3-log10 reduction); 
minimal reduction of AdV passing through 10-µm filters 

• AdV attached to particles >10-µm may be 
removed via sedimentation in subsequent 
WSPs 

Minas Gerais 
UASB 

Reactors 

Cascade filtration:  
10-µm > 0.45-µm > filtratec 

AdV concentrations on 10-µm and 0.45-µm filters were similar 
for both untreated sewage and UASB reactor effluent samples; 
AdV concentration passing through both filters was order of 

magnitude greater in UASB reactor effluent 

• UASB reactor may cause some particle-
associated AdV in untreated sewage to 
dissociate 

• AdV-particle associations in UASB 
reactor effluent may be less reversible 
than particle associations in granular 
sludge from UASB sludge blanket 

• Some of the AdV retained in granular 
sludge appear to settle to the bottom of 
the UASB reactor and are removed 
during sludge evacuation 

Separation by centrifugation at 1,157×g for 
10 min; separate analysis of supernatant 

and pellet; resuspension of pellet in 
glycine beef extract (GBE) buffer, 

repeated centrifugation, separate analysis 
of supernatant and pellet 

Similar AdV concentrations in supernatants of UASB reactor 
effluent and “blanket” sludge; greater proportion of AdV in 

pellet from “blanket” sludge released after contact with GBE 
buffer, compared to effluent of UASB reactor; AdV 

concentrations per dry weight in sludge “blanket” and bottom of 
the UASB reactor were similar 

a 0.45-µm (+) filters analyzed for PMMoV, NoVGI, and RV (Section 4.2), but not for AdV 
b Viruses concentrated using PEG precipitation 
c Samples were concentrated via acidification and adsorption-elution on 0.45-µm filters with bead-beating 
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5 WATER REUSE AND MICROBIAL RISK6 

5.1 Overview 

Globally, 1.5 billion people (the majority in developing countries) are connected to sewerage collection 

systems without any form of wastewater treatment (Baum et al. 2013). Many of the wastewater treatment systems in 

developing countries that do exist are overloaded, have major operation and maintenance problems, or are 

completely abandoned altogether (Libhaber and Orozco-Jaramillo 2012). With increasing population growth and 

water scarcity, the direct reuse of wastewater treated with overloaded or malfunctioning wastewater treatment plants 

and the indirect reuse of untreated wastewater discharged to water bodies, is becoming increasingly common for 

farmers in urbanizing watersheds. With the new SDG targets related to increasing wastewater treatment coverage 

and expanding safe water reuse by 2030, many of these communities with non-existent or ineffective wastewater 

treatment plants are likely to invest in wastewater treatment infrastructure. In order to establish effective wastewater 

treatment and safe water reuse practices, it is necessary to understand the fate and transport of pathogens and fecal 

indicators in wastewater reuse systems. Also, because the installation of new wastewater treatment plants can take 

years to complete, intermediary solutions (such as the use of RBF on farms) are necessary to reduce the existing 

health burden associated with many current water reuse practices that may be unsafe. 

The purpose of this chapter is to evaluate direct and indirect wastewater reuse for irrigation a) by 

comparing the fate and transport of pathogens and fecal indicators in WSPs and in on-farm RBF systems treating 

sewage-impacted river water, and b) by estimating health burdens from consuming wastewater-irrigated lettuce 

using a QMRA model that incorporates parameter uncertainty. Section 5.2 is a study of the performance of two 

overloaded WSPs in two small cities located in the Cochabamba Valley (Bolivia), and the fate and transport of 

pathogens and fecal indicators in these systems and in the fields irrigated directly with treated wastewater from these 

systems. Section 5.3 is a study of the use of RBF to treat surface water that is highly-contaminated with untreated 

sewage and is used to irrigate lettuce crops. Quantitative microbial risk assessment is used to assess the estimated 

                                                           
6 Sections 5.2 and 5.3 are written as stand-alone manuscripts for the journals Water Science and Technology and Environmental Science and 

Technology, respectively. Section 5.3 was submitted to Environmental Science and Technology on November 2, 2015. 
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health burdens in Cochabamba resulting from the consumption of lettuce irrigated with river water, and the 

consumption of lettuce irrigated with river water that is treated on the farm by RBF.  

 

5.2 Pathogens and Fecal Indicators in Waste Stabilization Pond Systems with Direct Reuse for 

Irrigation: Fate and Transport in Water, Soil and Crops 

5.2.1 Introduction 

WSPs are frequently used for wastewater treatment in rural areas, small communities, and regions with 

limited financial resources, partly because they are resilient systems that perform well and remove pathogens with 

limited maintenance requirements (Mara 2003). However, most studies in the literature are limited to WSP systems 

that are well-maintained and in good condition. Data is seldom collected from systems that are overloaded and that 

have started to malfunction due to the lack of maintenance and sludge accumulation. The social, economic, and 

environmental benefits of wastewater reuse have been well-documented (Cornejo et al. 2013; Mo and Zhang 2012). 

However, the majority of direct wastewater reuse for irrigation in the world likely occurs in places with treatment 

systems that are bypassed, abandoned, malfunctioning, or overloaded. For example, nearly 2.4 billion m3 of treated 

wastewater are directly used for irrigation each year in North Africa and the Middle East (FAO 2015), where many 

wastewater facilities are heavily overloaded (Ghneim 2010; McIIwaine and Redwood 2010). The Latin America and 

the Caribbean region has more land area equipped for direct wastewater irrigation than the Middle East and North 

Africa combined (FAO 2015), but less than 10% of the wastewater in this region receives treatment, partially due to 

the fact that the majority of wastewater treatment plants are either abandoned or experience operational problems 

and are malfunctioning (CReW 2014; Patiño Gómez and Lara-Borrero 2012; UN-HABITAT 2008). This lack of 

operation and maintenance for wastewater treatment systems poses a serious problem to safe wastewater reuse in 

many developing regions of the world.  

Little is known about pathogen removal efficiency in these overloaded wastewater treatment systems. Data 

about pathogens in water, soil, and crops from wastewater irrigation operations in developing countries with 

overloaded systems are also often not available. Few laboratories in developing countries are equipped to measure 

the concentrations of pathogens in environmental samples, and sometimes only fecal indicators (e.g., thermotolerant 

coliforms) are the only organisms monitored. As a result, many developing countries still operate with water reuse 

policies based on the old 1989 World Health Organization Guidelines for Wastewater Reuse (WHO 1989). These 
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old guidelines required thermotolerant coliform concentrations to be lower than 1,000 cfu per 100 mL for 

unrestricted reuse (e.g., irrigation of crops consumed raw, sports fields, public parks), and suggested that WSP 

systems with 8 – 10 days of retention provide sufficient treatment for restricted reuse (e.g., irrigation of fodder 

crops, pasture, cereal crops).  

The 2006 WHO Guidelines (WHO 2006) do not establish limits for fecal indicators, but rather recommend 

the use of QMRA to establish appropriate concentrations of pathogens in treated wastewater used for irrigation. 

There are several challenges associated with the implementation of these guidelines, which are much more complex 

than the 1989 guidelines. This requires knowing (or assuming) actual pathogen concentrations in treated wastewater, 

which is often done based on the concentrations in untreated sewage and an assumption about the pathogen 

reduction achieved for a given wastewater treatment process (e.g., use of WSPs). However, the pathogen reduction 

efficiency may be quite different in new or well-performing WSP systems than it is in overloaded and under-

maintained systems. Because of this, it is necessary to understand the performance of overloaded WSP systems, 

especially those systems where sludge has accumulated for years without removal, which is too often the case for 

WSP systems in small towns and low income regions. Another challenge associated with the implementation of 

water reuse policies based on the 2006 WHO Guidelines is the lack of knowledge about the concentration of 

pathogens in soil or on crops (which would be used to estimate the risks to field workers and consumers of crops). In 

most exposure assessments, the quantities of pathogens on irrigated crops are often estimated based on pathogen 

concentrations in irrigation water and an assumption about the retention of water by the crop after irrigation (e.g., 

Mok and Hamilton 2014; Shuval et al. 1997); this approach was also used for an example presented in the 2006 

WHO Guidelines for unrestricted water reuse for irrigation (WHO 2006). Concentrations of pathogens and fecal 

indicator organisms in irrigation water are seldom compared with the respective concentrations in irrigated soil and 

on irrigated crops.  

Therefore, the objective of this study was to assess the fate and concentrations of a broad range of human 

pathogens and fecal indicator organisms in water samples from two overloaded WSP systems, and in soil and crop 

samples from fields irrigated with the treated effluent of those systems. The organisms chosen for this study were E. 

coli, coliphage, Giardia, Cryptosporidium, and helminth eggs. Two WSP systems located in the upper Cochabamba 

Valley of Bolivia were used as case examples; in this region, wastewater is used to irrigate at least 5,700 hectares of 

crops (Ministerio de Medio Ambiente y Agua 2013). National wastewater reuse guidelines do not exist, but local 
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norms established in Cochabamba are based on the 1989 WHO guidelines. At the time of sampling, the two WSP 

systems were overloaded and had not been maintained. This is not uncommon in Bolivia, where 37% of wastewater 

treatment plants are not functioning at all, 22% provide only primary treatment, and the majority of wastewater 

treatment plants that are in operation perform poorly due to operation and maintenance problems (Ministerio de 

Medio Ambiente y Agua 2013). The two WSP systems described in this study are officially managed by the 

respective municipal wastewater companies, but in practice they have been largely abandoned, and are informally 

maintained by cooperatives of local farmers who use the effluent for irrigation.  

 

5.2.2 Methods 

5.2.2.1 Waste Stabilization Pond and Irrigation Systems 

The wastewater treatment systems in Arani and Punata, located in the Upper Cochabamba Valley, 

consisted of anaerobic, facultative, and maturation ponds (Figure 17). The system in Arani, which received an 

average flow rate of 748 m3/day, contained two 425 m3 anaerobic ponds (in parallel), followed by two 1,500 m3 

facultative ponds (in parallel), two 950 m3 primary maturation ponds (in parallel), and two 950 m3 secondary 

maturation ponds (in parallel). This system was constructed in 2000, and at the time of sampling, it had been 

operating for more than 13 years without sludge ever having been removed. The total theoretical HRT, based on the 

original pond volumes (not considering sludge accumulation) and the flow rate measured at the time of sampling, 

was 10 days. However, sludge had accumulated to the point where it blocked the entrance to many of the ponds, 

causing a situation where wastewater only flowed through one of each of the ponds in parallel. The sludge that had 

accumulated in the ponds that were receiving wastewater was estimated to occupy roughly 80% of the pond volumes 

(data not available). Considering that wastewater was only flowing through one of each of the duplicate ponds in 

series, and considering the estimated volume lost due to sludge accumulation, the total theoretical HRT for this 

system at the time of sampling was probably closer to only one day (Iriarte et al. 2013; Mercado et al. 2013).  

The WSP system in Punata received an average flow of 2,730 m3/day, and consisted of three 1,300 m3 

anaerobic ponds (in parallel), followed by two 7,000 m3 facultative ponds (in parallel), and three 3,000 m3 

maturation ponds (in parallel). The total theoretical HRT, based on the original pond volumes (not considering 

sludge accumulation) and the flow rate measured at the time of sampling, was also 10 days. However, flow patterns 

had also been disturbed in this system, causing wastewater to only flow through one of each of the ponds in parallel. 
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This unequal flow distribution may have occurred due to one or more of the following factors: 1) modifications 

made to the final outlet channel to divert treated water to irrigation fields, which altered the level of water upstream 

in the ponds; 2) poor construction of the inspection boxes, causing unequal distribution of flow to ponds connected 

in parallel; or 3) the lack of maintenance in the ponds, causing uneven sludge accumulation. Sludge in these ponds 

had not accumulated to the same extent as it had in the Arani system, but still had never been evacuated since the 

construction of the system in 1995. Considering the observed flow patterns and the estimated volume lost due to 

sludge accumulation, the theoretical HRT for this system at the time of sampling was estimated to be 2.5 days 

(Iriarte et al. 2013; Mercado et al. 2013). The final effluent from each system flowed to adjacent irrigation fields in 

open channels (Figure 18) and was applied to crops using a border irrigation technique with small rectangular plots, 

known locally as melgas, platabandas, or cajetas (Figure 19). Water was applied by farmers to one end of the plot, 

and allowed to sequentially flood the furrows between each crop row until the entire zone was flooded.  

 

5.2.2.2 Sample Collection 

Five grab samples of water were collected from the influent and effluent of the anaerobic ponds and from 

the final effluent from each system between 9am and 12pm in October and November of 2012 and in May, July, and 

October of 2013. A sample was also collected in July 2013 from the extraction point of the irrigation channel in 

Punata. Soil and crop samples were collected in October and November 2012, and in July 2013. Alfalfa was the only 

crop harvested from the Arani system irrigation field. Chard, beet greens, quinoa, and fava beans were harvested 

from the Punata system irrigation field. Leaves, stems, fruits, and seeds were harvested by aseptically clipping the 

plant at the root stem and placing it in a sterile container on ice. 

Samples were processed and analyzed within 48 hours at the Centro de Aguas y Saneamiento Ambiental 

(CASA), Universidad Mayor de San Simon (UMSS), in Cochabamba, Bolivia. Water, soil, and crop samples were 

analyzed for the following microbiological parameters: Escherichia coli, coliphages (plaque-forming units on E. coli 

strain C-3000), Giardia cysts, Cryptosporidium oocysts, and helminth eggs. All water samples were analyzed for E. 

coli, coliphage, and helminth eggs and all crop and soil samples were analyzed for total coliforms, coliphage, and 

helminth eggs. All water samples, except for those collected in October 2012, were analyzed for Giardia and 

Cryptosporidium, and soil samples from the Arani system were analyzed for Giardia and Cryptosporidium, but not 

soil samples from the Punata system. No crop samples were analyzed for Giardia or Cryptosporidium. With the 
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exception of the samples collected in July 2013, all water, soil, and crop samples were analyzed at the Centro de 

Aguas y Saneamiento Ambiental in Cochabamba, Bolivia, for the following physical-chemical parameters, using the 

Standard Methods (APHA et al. 2012): total suspended solids (TSS), five-day biochemical oxygen demand (BOD5), 

chemical oxygen demand (COD), total and soluble phosphorus (TP and SP), nitrites (NO2), nitrates (NO3), 

ammonium nitrogen (NH3), and total organic nitrogen (ON).  
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Figure 17. Schematic showing the nine sampling locations for the a) Arani and b) Punata waste stabilization 
pond and irrigation systems (not to scale). 
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Figure 18. Open channels used to transport treated wastewater from the stabilization pond systems in Arani 
(left) and Punata (right) to the farms where it is used for irrigation. 

 

Figure 19. Traditional Bolivian border irrigation technique using melgas (left); construction of melgas on a 
new field in the Cochabamba Valley (right top); use of furrow irrigation with melgas on a field of lettuce in 
the Cochabamba Valley (right bottom). 
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5.2.2.3 Coliform Bacteria Analysis 

MacConkey agar (BD Difco) was used to measure the concentration of lactose-fermenting bacterial 

colonies in soil and crop samples. For soil samples, 25 g of soil was diluted in 250 ml of sterile DI water and 

agitated manually by shaking vigorously for one minute. For crop samples, 25 g of the edible portion of the crop 

was blended in a food blender with 250 ml sterile DI water. Then, 0.2 ml of diluted soil or crop samples was poured 

onto a plate with MacConkey agar. After an incubation period of 24 hours at 37 °C, only bright pink colonies were 

counted. The presence of other non-lactose fermenting (atypical) colonies was noted as such. All samples (soil, 

water, and crop) were analyzed in duplicate and the average number of colonies was recorded and used to estimate 

the concentration. Colonies from at least one sample in each batch were transferred to a test tube with tryptic soy 

broth, incubated again, and evaluated for confirmation. The concentration of E. coli in water samples was measured 

using membrane filtration (US EPA 2006). Water samples or dilutions of 100 mL were passed through a 47-mm 

diameter filter with a pore size of 0.45 μm, and the filter was placed on a plate with modified mTEC agar, incubated 

at 35°C for 2 hours, and then at 44.5°C for 22 hours. Red- or magenta-colored bacteria colonies that formed after 

incubation were counted.  

 

5.2.2.4 Coliphage Analysis 

The concentration of coliphages was determined using a single agar layer method (APHA et al. 2012; US 

EPA 2001) with modifications as described by Grabow and Coubrough (1986) with host E. coli strain C-3000 

(ATCC #15597, Manassas, VA, USA). For water samples, 5 mL of sample or sample dilutions were analyzed in 

duplicate. Plates were incubated overnight (8 – 12 h) at 35°C, and plaques forming on the lawn of the host bacteria 

were enumerated. The average number of plaques from duplicate samples was recorded and used to estimate the 

concentration. Soil and crop samples for coliphage enumeration were concentrated in the same manner as described 

above for coliform bacteria, using the same dilutions, except that a volume of 5 mL of samples (or sample dilutions) 

was analyzed for coliphage samples.  

 

5.2.2.5 Analysis for Protozoan Parasites 

Samples were analyzed for Giardia cysts and Cryptosporidium oocysts, using US EPA Method 1623 (US 

EPA 2005), with some modifications. For water samples, a sample volume of 5 to 10 L was concentrated to a 
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volume of 10 mL, using centrifugation at 1,100×g for 15 min. For soil samples, 25 g was added to a flask with 100 

mL of Tris-Tween buffer solution (50 mM Tris with 0.5% v/v Tween 80), and mixed for 15 min. with a magnetic 

stir bar. The samples were then filtered using Whatman Grade 1 filter paper (Sigma Aldrich) with a filter funnel, a 

Buchner flask, and a vacuum pump. The filter was then washed three times with an additional 200 ml of Tris-Tween 

buffer. Next, the samples were placed in 50 mL tubes and centrifuged at 1100×g for 15 min, as was done for the 

water samples, to concentrate to a final volume of 10 mL. For crop samples, 200 mL of Tris-Tween buffer was 

added to a stainless steel blender with 25 g of the edible portion of the crop, and the mixture was blended at the low 

setting for 2 minutes. Then, the mixture was filtered over a stainless steel sieve with 150 μm pore size. An additional 

200 ml of Tris-Tween buffer was washed over the sieve. The resulting filtrate was then distributed into 50 mL tubes 

and centrifuged at 1100×g for 15 min, as was done for the water and soil samples, to concentrate to a final volume 

of 10 mL. Cysts and oocysts in the concentrated 10-mL volumes from water, soil, and crop samples were further 

concentrated using immune-magnetic separation with the Applied Biosystems Dynabeads® G-C Combo Kit 

(IDEXX Laboratories, Inc., Maine, USA), in accordance with the manufacturer’s instructions. Following this 

process, 50 μL of the concentrated cysts and oocysts were transferred to microscope slides, left overnight at room 

temperature to dry, and then stained using the Merifluor® Cryptosporidium/Giardia kit (Fisher Scientific, 

Pennsylvania, USA). Finally, cysts and oocysts were visualized using fluorescence microscopy, and enumerated 

based on their color under fluorescence (apple green) and the morphologies. 

 

5.2.2.6 Helminth Egg Analysis 

The concentration of helminth eggs in water samples was measured using CASA’s standard protocol, 

which has also been described previously (Verbyla 2012; also see Chapter 2). Briefly, eggs were isolated from 

samples using sedimentation, flotation with magnesium sulfate, and biphasic separation using an ether-ethyl and 

sulfuric acid solution. Portions of the concentrated samples were added to Neubauer Improved Bright-Line counting 

chambers, which were examined under a microscope (Eclipse E600, Nikon) at 400× or 1000× magnification, and 

helminth eggs were identified and enumerated. For soil samples, helminth eggs were concentrated using the Tulane 

method, which has a rate of recovery of 75.5% with a precision (percent variation) of 32.5% for soil samples 

(Bowman et al. 2003). Briefly, 20 g of soil was mixed with 200 mL of sterile DI water and transferred to a stainless 

steel blender where it was agitated for 1 min. The mixture was then transferred to a beaker and allowed to settle 
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overnight (12 to 14 h), after which the supernatant was discarded, leaving the bottom 100 mL. The blending/settling 

process was then repeated once more. Each time samples were transferred, the sides and bottom of the containers 

were washed with sterile DI water at least twice, to recover any helminth eggs that may have attached to the 

containers. After this second round of blending/settling, 900 mL of 7× detergent solution (5%) (MP Biomedicals) 

was added to the sediment; the solution was mixed, allowed to settle for 2 hours, and then the top 90% was 

decanted. Then, 300 mL of detergent solution was added and mixed for five minutes. The entire mixture was passed 

through a #20 mesh sieve, then through a #50 mesh sieve. The tops of the sieves were brushed lightly with a hair 

brush, and sprayed with sterile DI water, to help separate any remaining eggs from soil particles retained on the 

sieves. All filtrate was collected in a large beaker in the bottom of the sieves. Once more, 900 ml of 7x detergent 

solution (5%) was added, mixed, and the samples were allowed to settle for 2 hours, after which time the 

supernatant was decanted, leaving only the bottom 10% of the sample, which was mixed and distributed into 50-ml 

centrifuge tubes. The contents of these tubes were then treated as water samples and analyzed as described above. 

Edible portions of crop samples were aseptically placed into sterile containers with Tris-Tween buffer, manually 

agitated for 5 minutes, and then the buffer was transferred to a beaker. This washing process was done three times 

for each sample, using a total buffer volume of 1 – 2 L, composited into a single beaker for each sample. The 

washing buffer was then processed like water samples. 

 

5.2.2.7 Statistical Analyses 

A probability plot correlation coefficient test (NIST/SEMATECH 2012) was used to assess conformity of 

concentrations to a lognormal distribution. The data sets for some of the samples were left-censored (the measured 

concentration in some sample replicates was below the method limit of detection). Therefore, summary statistics 

(mean, standard deviation) and interval estimates were computed with the ‘robust’ implementation of regression on 

order (ROS) statistics, which uses a least-squares regression on a probability plot of the data, assuming a log-normal 

distribution to impute values for the censored portion (Helsel 2012). For samples where microorganisms were only 

detected in one replicate, the most probable number equation (Jarvis et al. 2010) was used to estimate the 

concentration. A two-sample Wilcoxon rank sum test was used to test if the log10-transformed concentrations of 

microorganisms detected at two sample points were significantly different. A significance level of 0.05 was used for 
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all statistical tests. Calculations were performed using ‘R’ version 3.1.0 (The R-Project for Statistical Computing, 

Vienna, Austria) with the ‘non-detects and data analysis’ (NADA) package (Lee 2013). 

 

5.2.3 Results and Discussion 

5.2.3.1 Physical-Chemical Quality of Reclaimed Water 

The pond systems in Arani and Punata, respectively, provided reductions of 74% and 86% for TSS, 69% 

and 54% for BOD5, and 71% and 55% for COD. This treatment performance is lower than it should be for WSP 

systems with the sizes and flow rates of these two systems (Mara 2003). The poor performance is likely due to non-

ideal flow conditions resulting from one or more of the following causes (Mercado et al. 2013): poor construction of 

diversion boxes used to split flow between ponds in parallel; changes in the water levels downstream from WSPs 

(caused by the construction of dams to divert treated water to farms); and/or excessive sludge accumulation causing 

the creation of preferential (short-circuiting) flow paths through the WSP systems. One interesting result is that the 

passage of wastewater through 200 m of an open irrigation channel in Punata, from the pond system outlet to the 

location where water is extracted for irrigation, resulted in additional reductions of 58%, 77%, and 25%, for TSS, 

BOD5, and COD, respectively. This demonstrates that additional treatment is achieved between the wastewater 

treatment plant and the irrigation fields. The concentration of ammonia-nitrogen (NH3-N) in the effluent of both 

systems was above 75 mg L-1, which is well above most criteria for acute or chronic toxicity for aquatic organisms 

(National Research Council 2012). The concentration of total phosphorus was >15 mg L-1 in both systems. The 

nutrient levels in the treated effluent indicate the environmental benefits of land applying treated wastewater instead 

of discharging to surface water bodies.  

 

5.2.3.2 Removal of Pathogens and Indicators in Stabilization Ponds 

The log10 differences in the concentrations of E. coli, coliphage, Giardia cysts, Cryptosporidium oocysts, 

and helminth eggs between the overall influent and effluent points for the two WSP systems are shown in Table 15. 

With the exception of coliphage in the Arani WSP system, the log10 removal of all microorganisms was significantly 

greater than zero, at least at the 10% level. The log10 removal of Giardia was significantly greater in the Arani 

system than it was in the Punata system (p-value = 0.02), but there were no other statistically significant differences 

in the log10 removal of pathogens or fecal indicators in the two systems. One possible explanation for the difference 
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in the observed log10 removals of Giardia in the two systems is heterogeneity in the relatively small number of 

samples collected. 

Table 15. Estimated log10 differences (and lower 95% confidence interval) in the concentration of pathogens 
and fecal indicator organisms in water samples collected at the overall influent and effluent points of the 
Arani and Punata waste stabilization pond systems. 

 Arani WSP System Punata WSP System 

E. coli 1.1** 
(95% LCI: 0.4) 

0.7* 
(95% LCI: -0.1)a 

Coliphage 0.2 
(95% LCI: -0.5)a 

1.0** 
(95% LCI: 0.2) 

Giardia 1.5*** 
(95% LCI: 1.0) 

0.8* 
(95% LCI: -0.1) 

Cryptosporidium 0.7*** 
(95% LCI: 0.4) 

0.8*** 
(95% LCI: 0.4) 

Helminth Eggs 0.6*** 
(95% LCI: 0.5) 

0.5** 
(95% LCI: 0.1) 

* Wilcoxon location shift (log10 removal) significantly greater than zero at the 10% level 
** Wilcoxon location shift (log10 removal) significantly greater than zero at the 5% level 
*** Wilcoxon location shift (log10 removal) significantly greater than zero at the 1% level 

a Negative values would indicate a possible increase in the concentration  

For both stabilization pond systems, the concentrations of E. coli in the final treated wastewater are two 

orders of magnitude above the previous limit recommended in the former WHO guidelines (WHO 1989) for 

wastewater reuse in agriculture (<1,000 MPN / 100 mL). The average E. coli removal in the Arani and Punata 

systems was approximately 1.0- and 0.8-log10 units, respectively. While this is less than ideal, it is not unexpected, 

given the dimensions of the ponds and the HRTs. The dispersed flow model, which accounts for axial dispersion in 

ponds with length-to-width ratios that are greater than one, has been proposed for coliform bacteria removal in WSP 

systems (von Sperling 1999; 2003; 2005), using the following equations: 

  (7) 

  (8) 
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  (9) 

where C is the predicted E. coli concentration exiting the pond, Co is the E. coli concentration entering the pond, Kb 

is the decay rate, θ is the theoretical hydraulic retention time (volume divided by flow rate), and δ is the dispersion 

number, estimated as the pond width divided by the pond length (von Sperling 1999). According to this model, 

assuming no sludge accumulation, the Arani and Punata systems should both theoretically achieve 0.9-log10 removal 

of E. coli, which is similar to the log10 removals observed. However, the von Sperling (1999; 2003; 2005) model 

does not account for the effects of extreme sludge accumulation and short-circuiting. Assuming the same decay rates 

(Kb) but reduced volumes to account for observed sludge accumulation, the model under-predicts the E. coli 

removals observed in the Arani and Punata WSP systems. However, according to Equation 9, decay rates increase 

with shallower depths. If pond volume and depth reduction due to sludge accumulation are taken into consideration 

to estimate new decay rates, the model over-predicts the observed E. coli removals.  

Coliphage removal in the Arani and Punata WSP systems was 1-log10 unit or less, and was not significant 

at the 5% level in either system. This was expected, given the low HRTs in these two systems. Results from the 

review of virus and bacteriophage removal in pond systems (see Chapter 3) indicated that pond systems require 14.5 

to 20.9 days of retention on average to achieve each log10 removal of viruses or bacteriophage. The observed 

removals of protozoan parasites Giardia and Cryptosporidium in the Arani and Punata WSP systems were similar to 

values reported by others in previous studies. Reinoso et al. (2011) reported Cryptosporidium and Giardia removals 

of 1.6- and 2.0-log10 units in a pond system with a total HRT of 5.5 days, consisting of two anaerobic ponds in 

parallel, followed by a facultative pond and a maturation pond in series.  

The most common helminth species detected in the water samples from Arani and Punata WSP systems 

were Ascaris spp. (41%), Hymenolepis spp. (27%), Taenia spp. (19%), Fasciola spp. (10%), and Trichuris spp. 

(3%). The helminth egg concentrations detected in the treated wastewater were between 31 and 130 eggs L-1 for the 

Arani system and between 69 and 352 eggs L-1 for the Punata system. These values exceed the maximum 

concentrations recommended by the WHO (2006), which are 1 egg L-1 if adults are working, and 0.1 eggs L-1 if 

children are present. The observed removals of helminth eggs in the Arani and Punata WSP systems were low 

compared to the removal predicted by the following two equations, which are based on the most widely-used model 

for helminth egg removal in WSP systems (Ayres et al. 1992; Mara 2003); the first equation is the line of best-fit, 
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while the second equation is the lower 95% confidence interval equation, recommended by Ayres et al. (1992) and 

Mara (2003) for design purposes: 

  (10) 

  (11) 

If the ponds were operating with their full volumes (i.e., zero sludge accumulation), then the Arani and 

Punata WSP systems should theoretically provide at least 3.6- and 3.1-log10 removal of helminth eggs, respectively, 

according to the lower 95% confidence interval of the Ayres et al. (1992) model (Equation 11). Even if accounting 

for the reduced HRTs due to sludge deposition (i.e., assuming 0.9 days overall HRT for Arani WSP system and 2.5 

days overall HRT for Punata WSP system), the Ayres et al. (1992) model still predicts at least a 1.7-log10 removal of 

helminth eggs for both systems. The observed helminth egg removals in the Arani and Punata WSP systems were 

more than an order of magnitude lower than these predicted values. The likely explanation for the poor efficiency of 

helminth egg removal is the excessive build-up of sludge. Sludge build-up affects the hydraulics of ponds, creating 

short-circuits that may be capable of carrying helminth eggs through to the outlet, or re-suspending helminth eggs 

that have been deposited in the pond sediments (Verbyla et al. 2013). The low helminth egg removals observed here 

evidence the need for a new helminth egg removal model for WSP systems, in particular one that takes into account 

sludge accumulation.  

 

5.2.3.3 Fate of Pathogens and Indicators in Irrigation Systems 

The quantiles of the concentrations of microorganisms detected at each point in the two pond systems, as 

well as the concentrations in the samples of soil and crops irrigated with treated wastewater are presented in Figure 

20. In the Punata system, the passage of water through the irrigation channels did not appear to result in any 

additional removal of the selected microorganisms. The concentrations of the selected microorganisms in soil and on 

crops are essentially the same in both systems, with the following exceptions: coliform bacteria, which were only 

detected in samples of beet greens and chard in Punata; and coliphage, which was only detected on fava beans in 

Punata. 

.  
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All concentrations are expressed per liter (water) or per gram (soil and crops). For samples in which no microorganisms were detected in any of 
the replicates, a black line is drawn between zero and the assay detection limit. RW = untreated sewage; AP = effluent of the anaerobic pond(s);  
MP = effluent of the final maturation pond; IC = irrigation channel; s = irrigated soil; c = irrigated crops. 

Figure 20. Quantiles of the measured concentrations of E. coli (cfu), total coliforms (cfu), coliphage (pfu), 
Giardia (cysts), Cryptosporidium (oocysts), and helminth eggs (eggs) in water, soil, and crop samples from the 
waste stabilization pond and irrigation systems in Arani (samples 1 – 4) and Punata (samples 5 – 9).  



www.manaraa.com

114 

To assess the transfer of the selected pathogens and fecal indicators from irrigation water to soil and crops, 

ratios of their concentrations in soil or crop samples divided by their respective concentrations in irrigation water 

(termed crop-water and soil-water ratios, with units mL g-1) were calculated, using quantiles of the ROS 

concentration estimates to incorporate variability and uncertainty (Figure 21). A higher ratio equates to a higher 

concentration in soil or on crops relative to the concentration in irrigation water, which could indicate one or more 

of the following: more efficient transfer from irrigation water to soil or crops; longer survival in soil or on crops; or 

slower leaching or washing away from soil or crops. The crop-water and soil-water ratios calculated for coliphage 

were the lowest of all (generally lower than 0.1 mL g-1); the ratios for Giardia and Cryptosporidium were similar to 

each other (generally between 1 and 100 mL g-1) but were higher than the ratios for coliphage; the ratios for 

helminth eggs were the highest of all (generally between 100 and 1,000 mL g-1). It is important to note that the 

differences in the methods used to detect the four different organisms are likely to have a great impact on the 

calculated ratios; for example, helminth eggs, Giardia cysts, and Cryptosporidium oocysts were all quantified by 

microscope examination based on morphology, without distinguishing between viable and non-viable (oo)cysts and 

eggs. In contrast, the assay used to quantify coliphages in water, soil, and crop samples measured only viable phages 

that were capable of forming plaques on the bacterial lawn formed by the host strain E. coli C-3000. Therefore, the 

lower soil-water and crop-water ratios may reflect the decay of coliphage in soil or on crops, since samples were 

generally collected a day or more after an irrigation event.  

Helminth eggs, Giardia cysts, and Cryptosporidium oocysts are known to persist longer in the environment 

than most viruses (Feachem et al. 1983; Mara and Feachem 1999), meaning that their crop-water and soil-water 

ratios should be greater than the corresponding ratios for coliphage. However, since the methods used to measure 

helminth eggs, Giardia and Cryptosporidium did not measure viability, the reported ratios likely over-estimate the 

actual ratios of viable (oo)cysts and eggs. They could be used to estimate the concentration of pathogens in soil or 

on crops relative to a known concentration in irrigation water, and evaluate risks associated with established 

irrigation water quality standards. For example, for a treatment system that complies with the 2006 WHO Guidelines 

recommendation of <1 egg L-1 in irrigation water, given an estimated crop-water ratio of 300 mL g-1 for helminth 

eggs, the corresponding concentration of helminth eggs in the irrigated crop should not exceed 0.3 eggs g-1, which 

would correspond with a dose of 30 eggs if 100 g raw produce were ingested by a consumer. In one study in 

Mexico, the median infective dose for Ascaris eggs was estimated to be between 35 and 859 (Navarro et al. 2009).  
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Figure 21. Ratios of the concentrations of coliphage (CP), Giardia (GI), Cryptosporidium (CS), and helminth 
eggs (HE) a) in soil relative to irrigation water; and b) in crops relative to irrigation water. Units are mL g-1. 
A higher ratio could either indicate more efficient transfer from irrigation water to soil or crops, slower 
decay in soil or on crops, or slower leaching or washing away from soil or crops. Ratios for coliphage marked 
with an asterisk (*) were calculated using the assay limit of detection. Since coliphage were either not detected 
in these samples or were only detected in one sample replicate at the limit of detection, the actual ratios may 
be lower.  

 

5.3 Managing Microbial Risks from Indirect Wastewater Reuse for Irrigation in Urbanizing 

Watersheds7 

5.3.1 Introduction 

With 33% of the world’s population lacking basic sanitation (United Nations 2015b) and another 21% 

connected to sewerage systems without treatment (Baum et al. 2013), the contamination of surface waters in rapidly-

urbanizing regions by fecal pathogens is widespread. Up to 18 million hectares of land are irrigated with untreated 

wastewater, either directly (irrigation with pure untreated wastewater) or indirectly (untreated wastewater mixed 

with another water source), causing health risks for farmers and consumers of irrigated produce (Drechsel et al. 

2010). Target 6.3 of the Sustainable Development Goals, adopted recently by the United Nations, aims to reduce the 

proportion of untreated wastewater and substantially increase safe water reuse worldwide by 2030 (United Nations 

2015c). Riverbank filtration (RBF) is a simple and practical technology used to treat surface water via multiple 

                                                           
7 Section 5.3 was submitted on November 2, 2015 to Environmental Science and Technology: Verbyla, M.E., Symonds, E.M., Kafle, R.C., 

Cairns, M.R., Iriarte, M., Mercado, A., Coronado, O., Breitbart, M., Ledo, C., Mihelcic, J.R. “Managing Microbial Risks from Indirect 
Wastewater Reuse for Irrigation in Urbanizing Watersheds,” Environmental Science and Technology (in review). 
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physicochemical and biological processes that naturally occur as water passes through riverbank soil (Tufenkji et al. 

2002). Though RBF is widely used to treat surface water for irrigation, its effectiveness at removing pathogens has 

not been sufficiently assessed for rivers that are highly contaminated with untreated sewage, which is a common 

occurrence in the developing world (Keraita et al. 2014). Even if the ultimate environmental protection goal 

involves the installation of centralized wastewater treatment or resource recovery facilities, RBF may be an 

appropriate intermediary solution for growing urban areas in developing countries, especially since pathogen 

removal for safe water reuse is an important priority for these regions (see Section 2.1 of this dissertation). 

The Rocha River in Cochabamba, Bolivia is a vital source of irrigation water that has become heavily 

impacted by untreated sewage, especially during the dry irrigation season (Ministerio de Medio Ambiente y Agua 

2013; Zabalaga et al. 2007). Some farmers still irrigate with the polluted river water, but others use RBF to treat the 

river water. In the United States, Cryptosporidium removal credits are provided when RBF is used to extract surface 

water (US EPA 2010b). Credits for virus removal are not provided, despite the documented effectiveness of RBF at 

removing enteric viruses (e.g. human adenovirus (AdV), enterovirus, Aichi virus) and pepper mild mottle virus 

(PMMoV), a proposed viral surrogate (Betancourt et al. 2014; Weiss et al. 2005). In Bolivia (and in other countries 

where untreated wastewater is reused indirectly for irrigation), RBF is generally not a sanctioned method for treating 

irrigation water (e.g., pathogen removal credits are not provided). To our knowledge, the effectiveness of RBF for 

removing pathogens from sewage-contaminated river water has only been reported once, and only for enteric viruses 

(Sprenger et al. 2014).  

The World Health Organization (WHO) recommends using quantitative microbial risk assessment 

(QMRA) to develop wastewater reuse policies (WHO 2006). However, QMRA is seldom used to evaluate the 

indirect reuse of untreated wastewater for irrigation in developing countries. Several limitations of previous QMRAs 

include using non-local exposure estimates (Diallo et al. 2008), assuming ratios between pathogens and fecal 

indicators instead of using pathogen measurements (Barker et al. 2014), and failing to incorporate variability and 

uncertainty from dose-response parameters (Sales-Ortells and Medema 2014). Ethnographic research methods can 

provide useful information for QMRAs, since behaviors linked to cultural practices affect pathogen exposure 

(Brown et al. 2011). Data for QMRAs in developing countries are often scarce, and if risks are modeled using 

simple point estimate assumptions, results can be misleading. The Bayesian approach enables the incorporation of 

variability and uncertainty in QMRAs (Schmidt et al. 2013), and therefore, can be valuable for determining water 
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reuse policies. This is particularly important because the United Nations reported that only 3% of countries in the 

world have water reuse plans, and 30% do not consider such a water management strategy to be relevant (UNEP 

2012). 

For this study, QMRA was used to evaluate an indirect water reuse scenario and determine how RBF 

affects the risk to consumers of irrigated produce, using a lettuce farm in Cochabamba as a model system. Microbial 

source tracking markers for PMMoV and the human-specific HF183 Bacteroides were measured to assess fecal 

contamination, and Giardia, Cryptosporidium, human rotavirus group A (RV), and AdV were measured for use in 

the QMRA. Additionally, E. coli and coliphage were measured for comparison purposes, given their common use as 

bacterial and viral fecal indicators, respectively. Culturally-relevant data regarding lettuce consumption and 

pathogen exposure were collected using ethnographic methods. A Bayesian approach was used to incorporate the 

uncertainty associated with dose-response data, ethnographic data, pathogen concentration estimates, and 

distributional assumptions for other model inputs. The impact of parameter variability and uncertainty on estimated 

health burdens was assessed using a sensitivity analysis. The results from this study provide governments, 

development organizations, farmers, and consumer groups with a decision-support framework to assess and manage 

health risks from indirect wastewater reuse in watersheds with extensive fecal contamination. The analysis of 

sensitivity between QMRA model inputs and health burden estimates can help decision-makers understand where 

interventions and data collection needs may be most beneficial. Although this study is focused on RBF and indirect 

reuse, the same approach can be applied for other water reuse scenarios. 

 

5.3.2 Materials and Methods 

5.3.2.1 Riverbank Filtration and Irrigation System 

Indirect wastewater reuse for lettuce irrigation was compared at two sites located 1 km apart. At the first 

site, farmers irrigate with untreated Rocha River water; at the second site, farmers irrigate with water from an 

unlined RBF extraction well located 65 m from the river. The heterogeneous superficial soil in this region contains 

sand, silt, mud, and clay, originating from quaternary lake deposits and recent fluvial deposits; the recharge area 

consists of clays, sands, and igneous rock with low permeability and low recharge capacity (Renner and Velasco 

2000). During the peak irrigation season (April – September), Cochabamba receives < 40 mm of rainfall, and 

farmers use the RBF well, which recharges at a rate of ~0.5 m h-1, for several hours weekly.  
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5.3.2.2 Hazard Identification 

RV, AdV, Cryptosporidium, and Giardia were selected as reference pathogens for this study. Samples were 

also analyzed for PMMoV, HF183, E. coli, and coliphage (using host strain E. coli C3000, which is susceptible to 

somatic and F-specific coliphages (Sobsey et al. 2004)). Though somatic coliphages have poor specificity for human 

fecal contamination (Harwood et al. 2014), coliphage assays are routinely used for research in Cochabamba. The 

HF183 Bacteroides marker has higher specificity for human feces than other bacterial microbial source tracking 

markers (Harwood et al. 2014). PMMoV is also specific for human feces (Harwood et al. 2014; Rosario et al. 2009), 

has been detected at high concentrations in wastewater in Bolivia (see Chapter 4), and may be a conservative 

surrogate for enteric viruses in RBF systems (Betancourt et al. 2014). 

 

5.3.2.3 Exposure Assessment 

QMRA model parameter assumptions are summarized in Table 16. Water, lettuce, and soil samples were 

collected throughout 2013 and 2014 to accommodate local crop rotation patterns. Grab samples from the river were 

collected and analyzed for RV (n=6), PMMoV (n=6), AdV (n=4), HF183 (n=2), E. coli (n=4), coliphage (n=4), 

Giardia (n=4), and Cryptosporidium (n=4).  Grab samples of water treated by RBF were also analyzed for RV 

(n=10), PMMoV (n=10), AdV (n=2), HF183 (n=3), E. coli (n=3), coliphage (n=8), and Giardia/Cryptosporidium 

(n=3). Soil and lettuce samples irrigated with untreated river water (n=2), and irrigated with water treated by RBF 

(n=3), were analyzed for coliphage, Giardia and Cryptosporidium, but not AdV or HF183. Only lettuce samples 

irrigated with water from the RBF well (n=15) were analyzed for RV and PMMoV (i.e., RV and PMMoV were not 

measured in soil samples, nor were they measured in lettuce samples irrigated with untreated river water). Cross-

contamination of lettuce and soil was not a concern because farmers irrigating with water from the RBF well did not 

irrigate with untreated river water, and vice versa. 

A modified adsorption-elution method (see Section 4.2 of this dissertation) was used to concentrate water 

samples (≤1 L) for RV, PMMoV, AdV, and HF183 analyses. Following a standardized method (El-Senousy et al. 

2013; ISO/TS15216-1 2013), viruses were eluted from lettuce samples (20 – 37 g) with Tris-glycine beef extract 

buffer, and concentrated using polyethylene glycol and NaCl. Sample filters and concentrates were preserved in 600 

μL lysis buffer RLT Plus, and stored at -80°C until DNA/RNA purification with the AllPrep Mini Kit (Qiagen, 

Valencia, CA). RNA was immediately reverse-transcribed (RT) with the First Strand Synthesis Superscript III 
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Reverse Transcription Kit (Invitrogen, Carlsbad, CA) using random hexamer primers. Nucleic acid purification and 

RT positive and negative controls were also processed (see Appendix E). DNA and cDNA were stored at -20°C. 

Previously-published quantitative polymerase chain reaction (qPCR) and RT-qPCR assays for RV, AdV, PMMoV, 

HF183, and purification/RT controls (Appendix E, Tables E2 and E3) (Haugland et al. 2005; Jothikumar et al. 2005; 

Rosario et al. 2009; Staley et al. 2012a; b; Svraka et al. 2009; US EPA 2010c) were executed with the ABI7500 

Real-Time PCR System (Life Technologies, Grand Island, NY) (Bustin et al. 2009). Coliphage concentrations were 

determined using a plaque assay (Grabow and Coubrough 1986) with host strain E. coli C3000 (ATCC #15597, 

Manassas, VA). Soil and lettuce samples (25 g) were added to 250 mL sterile DI water, and shaken vigorously (soil) 

or processed in a food blender (lettuce) for 1 min. Five mL of samples (or dilutions) were added to plates with the 

host culture, and plaques were enumerated after overnight incubation at 35°C. Giardia cysts and Cryptosporidium 

oocysts were isolated and quantified using filtration, immunomagnetic separation (IMS), fluorescent antibody (FA) 

staining and microscopic examination (US EPA 2005). E. coli was quantified using membrane filtration (US EPA 

2006).   

The theoretical (RT-)qPCR process limits of detection (pLOD) (defined as the number of copies 

corresponding with 95% probability of amplification (Bustin et al. 2009)) were 7.7×102 PMMoV, 1.2×103 RV, 

1.1×105 AdV, and 72 HF183 copies L-1. The presence/absence of the AdV hexon gene was also determined in RBF 

well samples (n=5) using a nested PCR assay (Allard et al. 1992), which detects as few as 100 copies per reaction 

(Symonds et al. 2009) (2.7×103 copies L-1 for 941-mL RBF well samples). The pLODs for other assays used in this 

study were 500 colony forming units (cfu) L-1 (E. coli), 20 plaque forming units (pfu) L-1 (coliphage), and 0.04 

(oo)cysts L-1 (Giardia/Cryptosporidium). 

For the QMRA, log-normal distributions were assumed for pathogen concentrations in irrigation water. For 

samples with <80% censored values, robust regression-on-order statistics (Helsel 2012) were used to estimate means 

and standard deviations of log-normal distributions. For samples with >80% censored values, the pLOD was 

assumed to correspond with the 95th percentile of a log-normal distribution, and distribution parameters were 

estimated using categorical data about the presence/absence of the target in replicate samples (see Appendix E). 

Calculations were performed in Microsoft Excel and ‘R’ v3.1.0 (R-Project for Statistical Computing, Vienna, 

Austria) with the NADA package (Lee 2013). 
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Table 16. Quantitative microbial risk assessment parameters and assumptions. 

Parameter Units Assumptions a References 
Concentrations in Irrigation Water 

Rotavirus copies L-1 Rocha River: dlnorm(15.24,3.69) 
Riverbank Filtrate: dlnorm(4.48,0.63) 

Data 
collected for this study 

Adenovirus copies L-1 Rocha River: dlnorm(19.51,1.22) 
Riverbank Filtrate: dlnorm(7.15,0.37) 

Giardia cysts L-1 Rocha River: dlnorm(5.78,0.52) 
Riverbank Filtrate: dlnorm(0.75,1.27) 

Cryptosporidium oocysts L-1 Rocha River: dlnorm(1.27,0.86) 
Riverbank Filtrate: dunif(0,1.0) 

Harmonization Factors 

Rotavirus ffu copies-1 dunif(5.26×10-4,1.0×10-3) (McBride et al. 2013; Mok and 
Hamilton 2014) 

Adenovirus TCID50 copies-1 dunif(1.43×10-3,0.1) (Flint et al. 2009; Heider and Metzner 
2014; Kundu et al. 2013) 

Volume of irrigation water captured by lettuce 

Lettuce mL g-1 dlnorm(-4.57,2.0,0.006) (Mok and Hamilton 2014) 

Post-Irrigation Decay in the Field b 

Rotavirus days-1 dnorm(1.07,14.29) c (Mok and Hamilton 2014) 

Adenovirus log10 reduction dunif(1,3) d (Carratalà et al. 2013; Rzezutka and 
Cook 2004; Ward and Irving 1987) 

Giardia days-1 dunif(0.06,0.46) (Petterson and Ashbolt 2003) 

Cryptosporidium days-1 dunif(0.01,0.03) e (Davies et al. 2005; Petterson and 
Ashbolt 2003) 

Conditional probability of illness (given infection) 

Rotavirus pill|inf = Uniform(0.35,0.90) (Havelaar and Melse 2003; Soller et 
al. 2010; Viau et al. 2011) 

Adenovirus pill|inf = Uniform(0.25,0.75) (Havelaar and Melse 2003; Soller et 
al. 2010; Viau et al. 2011) 

Giardia pill|inf = Uniform(0.24,0.93) (Barker et al. 2013b) 

Cryptosporidium pill|inf = 0.50 (McBride et al. 2013; Soller et al. 
2010) 

Disease burden per case of illness 

Rotavirus DALYs case-1 Uniform(0.015, 0.026) Chapter 4 of this dissertation 

Adenovirus DALYs case-1 Uniform(0.0004,0.0055) (Gaunt et al. 2011; Harder et al. 2014; 
Katukiza et al. 2013) 

Giardia DALYs case-1 Uniform(0.0021,0.00268) (Barker et al. 2013b) 

Cryptosporidium DALYs case-1 Uniform(0.00012, 0.0015) (Gao et al. 2015) 
a  dlnorm = lognormal distribution(mean, precision, [shift parameter]);  
   dnorm = normal distribution (mean, precision);  

dunif = uniform distribution(low, high)  
b  With the exception of adenovirus, it was assumed that all organisms exhibit monophasic exponential decay. Adenovirus on 

lettuce may exhibit a decay rate that conforms to linear regression (Carratalà et al. 2013) 
c  Truncated at 0 and 1000 
d  Uniform distribution of 1 to 3 log10 reduction achieved after 3 – 4 days in field after irrigation 
e  Range of rates reported for experiments performed at 20°C  
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Annually, 1.1 kg of lettuce is produced per person in Bolivia, with 96% consumed domestically (Appendix 

E, Table E6) (Instituto Nacional de Estadistica 2008). While previous studies assumed uniform lettuce consumption 

in a population (Mara and Sleigh 2010a; Seidu et al. 2008) some people likely consume more than average and 

others may not consume any. To better understand the distribution of lettuce consumption in Cochabamba, an 

ethnographic study, consisting of convenience-sample surveys and participant observations, was conducted. Surveys 

were administered to market-goers (n=42), and through participant observation, nearly 50 lettuce vendors informally 

discussed topics such as the origin of their lettuce and their perceptions of its quality. Methods were approved by the 

University of South Florida Institutional Review Board.  

Survey data were used to estimate the average lettuce mass (mj) consumed in households per person per 

year: 

  (12) 

where hj is the number of lettuce heads purchased per household, mh is the average lettuce head mass, tj is the 

number of times lettuce is reportedly purchased annually, and Nj is the number of people in the jth household. The 

daily serving size (Sj, average mass of lettuce ingested in the jth household) was estimated as: 

  (13) 

where nj is the number of days per year lettuce is reportedly served at home. 

In Cochabamba, lettuce is harvested three or four days after irrigation. Crops are pulled from the soil and 

tossed onto a tarp, which is shipped directly to market. It was assumed that pathogen concentrations on lettuce did 

not change between harvest and consumption (Mok et al. 2014). The daily pathogen dose (dj) ingested in the jth 

household was determined as:  

  (14) 
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where C is the modeled pathogen concentration in irrigation water, Sj is the lettuce serving size, V is the volume of 

irrigation water retained by lettuce (mL g-1; log-normal distribution; mean = -4.57; SD = 0.5; shift = 0.006),(Mok 

and Hamilton 2014) k is the pre-harvest pathogen decay rate, and t is the time between irrigation and the time lettuce 

is harvested. 

 

5.3.2.4 Dose-Response Assessment 

Dose-response data from clinical studies were used for all reference pathogens (Appendix E, Table E5) 

(Couch et al. 1966, 1969; Okhuysen et al. 2002; Rendtorff 1954; Teunis et al. 2002; Ward et al. 1986). The number 

of volunteers infected in the ith group (Xi) of Ni volunteers was assumed to be binomially-distributed with probability 

pi, assuming volunteers received a Poisson-distributed dose (di). Dose-response models were selected based on 

previous recommendations (Couch et al. 1966, 1969; Okhuysen et al. 2002; Rendtorff 1954; Teunis et al. 2002; 

Ward et al. 1986). For RV, the beta-binomial conditional dose-response model (a decomposed version of the 

complete Beta-Poisson model) was used, where α and β are shape parameters (Schmidt et al. 2013):  

  (15) 

For AdV, Cryptosporidium, and Giardia, the exponential dose-response model was used with parameter r 

(Schmidt et al. 2013): 

  (16) 

5.3.2.5 Markov Chain Monte Carlo and Risk Characterization 

OpenBUGS (v3.2.2, rev. 1063) was used with non-informative prior distributions for α, β, and r to generate 

initials and sample from the joint posterior density function using Markov Chain Monte Carlo (MCMC) with one 

chain (see Appendix E) (Schmidt et al. 2013). After a 10,000 iteration burn-in, 40,000 iterations were recorded. 

Posterior distributions of α, β, and r were used with Equations 4 and 5 (substituting subscript i with j) to estimate the 

daily probability of infection (pj) for the jth survey respondent, given the pathogen dose (dj). The conditional 

probabilities of illness (pill|inf) were assumed to be uniformly-distributed ranges of previously-published values 
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(Table 16). The daily probability of illness (pill,j) was calculated as the product of pj and pill|inf. Annual probabilities 

of illness (Pill,j) were estimated with the following equation, where nj is the number of days per year lettuce is served 

in the jth household: 

 ,  j = 1,2,…, (17) 

Risk was characterized as an annual health burden (Bj), expressed in disability-adjusted life years 

(DALYs), using Equation 7, where Sf is the susceptible fraction of the population and bc is the health burden per 

case. 

  (18) 

It was assumed that everyone was susceptible to all pathogens, except for RV, where only children under 5 

were considered. Since 88% of Bolivian children received the RV vaccine, which has an effectiveness rate of 54 to 

79% (Patel et al. 2013; WHO 2014), the susceptible fraction of the population was estimated as:  

  (19) 

where the fraction with resistance (fr) is 0.87 (children <5 years comprise 13% of the Cochabamba population), the 

fraction vaccinated (fv) is 0.88, and the vaccine efficiency (ev) ranges uniformly from 0.54 – 0.79. Using RV as an 

example, the sensitivity of the QMRA was analyzed by calculating Spearman rank order correlation coefficients 

between the MCMC-simulated model inputs and estimated annual disease burden. A significance level of 0.05 was 

used for all statistical tests. 

 

5.3.3 Results and Discussion 

5.3.3.1 Lettuce Consumption in Cochabamba 

Survey respondents had a median age of 43 (SD = 11.5), and compared to census data, were over-

represented by women and relatively representative of ethnic groups (based on reported languages spoken at home, 

see Appendix E). Using Equation 1, the median mass of lettuce purchased annually per household member was 
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estimated to be 3.4 kg (5th percentile = 0.9 kg, 95th percentile = 16 kg, SD=5.9). Survey respondents reported serving 

lettuce at home, with median serving sizes of 19 g (5th percentile = 6.9 g, 95th percentile = 130 g, SD=65), 169 times 

annually, on average (SD = 110, Appendix E, Figure E4). This estimated lettuce consumption is much lower than 

the WHO example of 100 g per person for 150 days per year (15 kg person-1 year-1), and less than assumptions made 

previously for China, Australia and Spain (Appendix E, Table E7). In addition, since only 1.1 kg of lettuce is 

produced in Bolivia per capita for domestic consumption annually (Instituto Nacional de Estadistica 2008), the 

surveyed population likely consume three times more lettuce than average. 

The informal conversations with lettuce vendors during participant observation revealed generally negative 

attitudes toward the sanitary quality of lettuce grown near the Rocha River.  It was described as being irrigated with 

dirty water and was considered to contain “bichos” (Spanish word for ‘bugs’). It was also reported that some farmers 

near the river had to sell their crops in other cities. Conversations with vendors overall supported our observations 

that river water irrigation (with or without on-farm treatment) is socially-stigmatized in Cochabamba as an 

unsanitary practice. 

 

5.3.3.2 Irrigation Water Quality 

Microbial pathogen and indicator concentrations in irrigation water are shown in Figure 22. Median 

concentrations in the Rocha River were: 3.2×108 AdV copies L-1, 6.4×107 PMMoV copies L-1, 1.8×107 E. coli cfu L-1, 

1.4×107 HF183 copies L-1, 3.6×106 RV copies L-1, 1.1×105 coliphage pfu L-1, 530 Giardia cysts L-1, and 4.0 

Cryptosporidium oocysts L-1. Lower concentrations were measured in RBF well water: 7.7×104 PMMoV copies L-1, 

3.0×103 E. coli cfu L-1, 5.9×102 coliphage pfu L-1, 4.5×101 HF183 copies L-1, and 2.0 Giardia cysts L-1. 

Cryptosporidium was detected at 0.04 oocysts L-1 in two of three sample replicates, but undetected in the other 

replicate. AdV was not detected in RBF well water via qPCR; however amplification was observed for two of five 

nested PCR sample replicates, indicating its presence at concentrations below the qPCR pLOD (1.1×105 copies L-1).  

For RV, amplification was also inconsistently observed in replicate RT-qPCR samples, corresponding to 

concentrations below the pLOD. Since DNA and cDNA isolation efficiencies (per positive controls) were 30 – 46% 

and 38 – 79%, respectively, measurements may underestimate actual concentrations.  

The log10 differences between the concentrations of microbial pathogens and indicators in the river and the 

RBF well were estimated using the Wilcoxon rank-sum test (Table 17). The greatest log10 removals were for HF183 
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(5.5-log10), followed by E. coli (3.8-log10), RV (>3.5-log10), AdV (>3.5-log10), PMMoV (2.9-log10), Giardia (2.1-

log10), coliphage (2.0-log10), and Cryptosporidium (1.7-log10). The RBF well has no casing and is not capped or 

sealed, leaving it vulnerable to contamination by non-point pollution sources. The well may be recharged to a certain 

extent by ambient ground water, excess irrigation water applied to nearby farm plots, or infiltrating precipitation. 

However, the recharge area located upstream has low permeability and low recharge capacity (Renner and Velasco 

2000), and due to the lack of nearby onsite sanitation facilities, the presence of PMMoV and HF183 in the well 

strongly suggests human fecal contamination (Harwood et al. 2014) originating from the river. To prevent 

contamination by pathogens in animal waste, RBF wells should be capped and sealed. 

The log10 virus removals in this RBF system are similar to other results reported in the literature. In RBF 

wells in the United States with 31 to 92 m setbacks from the river, 1.92- to 3.76-log10 removal was reported for 

PMMoV; AdV was only detected in one of 12 RBF well samples at 1.2 copies L-1, despite being detected in river 

samples at 27 – 95,600 copies L-1 (Betancourt et al. 2014). In three other RBF wells in the United States with 24 to 

177 m setback distances from the rivers, male-specific and somatic coliphage concentrations were respectively 

reduced by more than 2- and 4-log10 units (Weiss et al. 2005). In a heavily-contaminated river in India, AdV was 

detected at 3.6×105 copies L-1 in the river, but was not detected in a RBF well located 50 m away; >6-log10 removal 

of somatic coliphage was reported in the same system (Sprenger et al. 2014). Given their effectiveness and 

simplicity, RBF systems used to treat irrigation water should be sanctioned and regulated in developing countries, 

perhaps by offering pathogen removal credits and requiring sanitary inspections. Efforts should also be made to 

increase the public acceptance of this technology. 

 

5.3.3.3 Contamination of Soil and Lettuce 

In soil and lettuce samples irrigated with both water sources, coliphage and Cryptosporidium were detected 

intermittently at concentrations close to the detection limits (2 pfu g-1 and 0.04 oocysts g-1, respectively). The 

average Giardia concentrations in soil samples irrigated with untreated and RBF-treated river water, respectively, 

were 1.6 cysts g-1 (SD=0.1) and 1.1 cysts g-1 (SD=0.1). Giardia was also detected at 0.3 cysts g-1 (SD=0.1) in lettuce 

samples irrigated with untreated river water, and at 0.2 cysts g-1 (SD=0.1) in lettuce samples irrigated with RBF-

treated river water. 
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Figure 22. Measured and assumed distributions of concentrations for E. coli, coliphage, Giardia, Cryptosporidium, rotavirus (group A), adenovirus, 
pepper mild mottle virus (PMMoV), and the HF183 Bacteroides 16S rRNA genetic marker in irrigation water samples from the Rocha River and from 
the riverbank filtration well. 
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Table 17. Changes in the measured concentrations of microorganisms in the Rocha River and the riverbank 
filtration well, based on log10 location shifts determined by the Wilcoxon rank-sum test. 

Microorganism Method of Detection Log10 Reduction  
(lower 95% C.I.) 

Escherichia coli Membrane filtration 
(mTEC agar) 3.8* (3.1) 

Bacteroides (HF183 
16S rRNA marker) qPCR 5.5† 

Coliphage  
(on E. coli C3000) 

Single agar layer plaque 
assay 2.0** (1.4) 

Pepper Mild  
Mottle Virus RT-qPCR 2.9** (2.7) 

Rotavirus Group A RT-qPCR > 3.5† 

Human Adenovirus qPCR > 3.5† 

Giardia 
Filtration/IMS/FA 

Microscopic 
Examination 

2.1* (1.1) 

Cryptosporidium 
Filtration/IMS/FA 

Microscopic 
Examination 

1.7* (0.0) 

* p-value < 0.05 
**  p-value < 0.01 

† not enough data to determine p-value or confidence interval 

AdV was not detected in lettuce samples by nested PCR; however, PMMoV was inconsistently detected via 

RT-qPCR in 53% of lettuce samples (n=15) irrigated with the RBF well at concentrations below the pLOD. The 

range of replicate sample masses (20.7 – 36.5 g) may have influenced these results, since lettuce samples where RT-

qPCR amplification occurred had greater masses than the other samples (two-sample T-test, p-value = 0.069). Using 

the survival function with categorical data (see Appendix E), the PMMoV concentration on lettuce was estimated to 

be 4.1 copies g-1 (95% C.I.: 1.1, 18). The ratio of this concentration to the PMMoV concentration in the water used 

to irrigate the lettuce is 0.05 mL g-1 (95% C.I.: 0.0092, 0.35), which is similar to previously-reported values of 

irrigation water volume captured by lettuce (Mok and Hamilton 2014; Shuval et al. 1997). PMMoV has previously 

been proposed as a conservative tracer for enteric virus removal in RBF systems (Betancourt et al. 2014); results 

from the present study suggest that PMMoV may also be a useful enteric virus surrogate to identify crop 

contamination from indirect wastewater reuse for irrigation. 

 



www.manaraa.com

128 

5.3.3.4 Microbial Risk of Consuming Irrigated Lettuce 

QMRA results using data from the market surveys are shown side-by-side with results using the WHO 

scenario for lettuce consumption and the average mass of lettuce produced per capita in Bolivia for domestic 

consumption (Figure 23). Estimated disease burdens for consumers of irrigated lettuce were reduced significantly as 

a result of RBF. The following reductions were estimated (expressed as the range of median percent reductions of 

DALYs person-1 year-1): from 99.9% to more than 99.999% for RV, from 94.2% to 99.9% for AdV, from 98.7% to 

99.3% for Giardia, and a consistent reduction of 88.5% for Cryptosporidium. For the untreated river water irrigation 

site, estimated median disease burdens for RV, AdV, and Giardia were greater than the limit recommended in the 

2006 WHO Guidelines (10-4 DALYs person-1 year-1) (WHO 2006). However, for the RBF system case, the median 

estimates for disease burden were all below this threshold, thus satisfying WHO guidelines. Furthermore, the sum of 

median estimated health burdens from all reference pathogens for the untreated river water irrigation system 

represents 37% of the annual health burden per person from acute diarrhea in Bolivia (which is currently 0.015 

DALYs (Prüss-Üstün et al. 2008)). The sum of median estimated health burdens for the RBF system case only 

represents 1.1% of this overall health burden. Such an increase is epidemiologically indistinguishable and would be 

very difficult to detect (Mara 2011). Thus, the implementation of RBF in Cochabamba effectively satisfies the WHO 

guidelines for safe wastewater reuse in agriculture. On-farm interventions, like RBF, can be effective, transitional 

solutions for communities currently lacking wastewater treatment, while they invest in long-term infrastructure. 

The results of the ethnographic study used with this QMRA demonstrate the potential impact of culturally-

specific diets on pathogen exposure. The irrigated lettuce exposure example used in the 2006 WHO Guidelines 

overestimates risk for most Bolivians (Figure 23), and leads to estimated disease burdens that align with the 94th 

percentile of the health burden distribution estimated in this study for Bolivian market-goers. The results from the 

sensitivity analysis (Figure 24) show that the variability and uncertainty associated with environmental and cultural 

factors affecting exposure (e.g., pathogen concentration, pre-harvest decay, transfer from water to lettuce, lettuce 

serving size, and lettuce consumption frequency) correlate more with estimated health outcomes than factors related 

to disease vulnerability (e.g., disease burden per case, the conditional probability of illness given infection, and 

parameters used to estimate the susceptible fraction of the population). This suggests the need for investing in the 

evaluation of interventions that reduce exposure as a means to satisfy WHO recommendations with respect to safe 

indirect wastewater reuse practices. 
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Figure 23. Credible intervals for the estimated disease burdens in DALYs resulting from the consumption of lettuce irrigated with water obtained 
directly from the Rocha River or with water from the riverbank filtration system, for (a) rotavirus, (b) adenovirus, (c) Cryptosporidium, and (d) Giardia. 
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Figure 24. Tornado chart showing Spearman rank order correlation coefficients between QMRA model 
parameters and the predicted health burden caused by rotavirus illness resulting from the consumption of 
lettuce irrigated with water from the riverbank filtration system. 
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6 OVERALL CONCLUSIONS AND RECOMMENDATIONS 

6.1 Selection of Appropriate Technologies based on Wastewater Management Priorities 

The recent adoption of the SDGs by the United Nations will have a tremendous influence on the global 

development agenda during the next two to three decades. The inclusion of Target 6.2, which is to provide sanitation 

for all by 2030, and Target 6.3, which is to halve the proportion of untreated wastewater and increase safe water 

reuse globally by 2030, will lead to the mass construction of new wastewater treatment plants throughout the 

developing world. In order for these targets to be met with long-term success, governments and development 

organizations must utilize appropriate technologies that meet the needs of a wide range of community stakeholders 

(Wells et al. 2014), and can be adequately maintained by the community. The overwhelmingly predominant reason 

for the poor performance or failure of wastewater infrastructure in developing countries is the lack of maintenance 

(Libhaber and Orozco-Jaramillo 2012). The lack of maintenance was also the primary reason for the failure of 

approximately 50,000 water supply points that were recently installed in sub-Saharan Africa to support the MDGs, 

which has caused a loss of US$215 to $360 million, and has negatively impacted public health and the livelihoods of 

women in particular (Skinner 2009). Unless proper consideration is given to the operation and maintenance of the 

new wastewater treatment system infrastructure that will installed throughout the developing world in the years to 

come, these systems may encounter a similar fate.  

Priorities for wastewater management (and for sanitation in general) tend to be very context-specific, and 

dependent on various socio-cultural and geographical particularities of a given location. Human waste can be 

returned to the environment, or reused for a variety of purposes. From a regional management standpoint, small 

cities should not expend resources to treat wastewater to levels suitable for discharge into surface waters, but should 

instead focus on removing pathogens to safely reuse the nutrient-rich water for irrigation (see Section 2.1). 

Wastewater reuse in agricultural activities can also help address the targets associated with SDG Goal 2, which is to 

end hunger, achieve food security and improved nutrition, and promote sustainable agriculture. The SDGs also 

contain targets related to the development of renewable energy, but energy recovery from wastewater may be a 

priority that is subservient to water and nutrient recovery, at least for small urbanizing cities in developing countries.  
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Originally developed in the Netherlands to treat industrial wastewater, UASB reactors were later tested in 

tropical environments. Successful demonstrations in Colombia during the 1980s led to the scaling up and replication 

of the technology throughout Colombia, all with support from the Dutch government (Lettinga 2010). Brazil quickly 

followed suit, adopting the widespread use of this technology to increase their national rate of wastewater treatment 

coverage. The momentum of the successes in Colombia and Brazil led to the popularity of the UASB reactor, which 

soon spread to other less economically-developed regions in South America, Central America, South Asia, and 

southern Africa. UASB reactors do not provide sufficient pathogen removal for safe water reuse or discharge to 

surface water bodies (Chernicharo 2007), and therefore must be used in combination with other treatment 

technologies. Today, they are often installed to replace overloaded, under-maintained, and failing WSP systems, or 

are used in combination with WSPs. Marketed as appropriate technologies for decentralized wastewater treatment, 

UASB reactors are frequently constructed in small cities or periurban communities, regions without the same human 

resources needed for operation and maintenance as larger, more established urban centers. They are sometimes 

managed by community water committees whose members may be volunteers or may have other full-time 

occupations.  

One advantage of UASB reactors is that they are designed such that biogas, which contains up to 70% 

methane, can be easily harvested. Therefore, their use can support SDG Goal 7, which is to ensure access to 

affordable, reliable, sustainable and modern energy for all. However, just because UASB reactors can produce 

biogas does not mean that it will be used. In fact, very few communities in Central and South America with UASB 

reactors actually reuse the biogas that is produced. Biogas produced by the CePTS UASB reactor (see Section 4.3) is 

occasionally reused in a small cookstove for demonstration purposes (it is a pilot-scale system managed by a 

university research group to demonstrate the technology); biogas from the Minas Gerais UASB reactors (see Section 

4.3) is flared; biogas from the Yungas UASB-Pond system (see Sections 2.1 and 4.2) is occasionally flared, but is 

often simply released into the atmosphere. The biogas from several other full-scale UASB reactors in Honduras and 

Bolivia is likewise either flared or released into the atmosphere (author’s personal observations). It was recently 

demonstrated that the release of methane from small scale anaerobic reactors in developing countries could become 

a global “climate bomb,” corresponding to more than 2% of global emissions by 2020 (Bruun et al. 2014). Some 

possible reasons for the lack of reusing biogas produced by UASB reactors in developing countries include long 

distances between the wastewater treatment plant and places of energy demand, low costs of alternative energy 
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sources, and lack of infrastructure to convert the energy into a more useable form (e.g., electricity). In order to 

adequately assess resource recovery priorities and choose the appropriate wastewater treatment technologies, ex ante 

analyses of energy, nutrient, and irrigation water demands should be used for all future projects. This will require 

collaboration from multiple sectors, including energy, environment, health, and agriculture.  

 

6.2 Virus Removal in Waste Stabilization Ponds 

Some small cities will choose to continue using WSPs to manage wastewater. Many of them either 

currently practice water reuse, or may be encouraged to practice water reuse, due to increasing water scarcity and 

pressure to address SDG Target 6.3. To protect public health, sufficient pathogen removal must be provided. As 

demonstrated in Chapter 3 of this dissertation, the following are knowledge gaps in the understanding of virus 

removal in WSP systems that still remain: lack of understanding about the extent of virus interactions with WSP 

particles (including other micro- and macro-organism); and the impact these interactions have on virus removal or 

inactivation (e.g., the effect of virus-particle associations on sunlight-mediated inactivation and effect of virus 

internalization by higher-trophic organisms on virus viability). There is also a lack of a model to predict virus 

removal in WSP systems. From a regional development perspective, this creates challenges for planning water reuse 

projects. Engineers and operators of WSP systems typically consider theoretical HRT to be a key design parameter. 

The removal of fecal indicator bacteria in WSPs can be well-predicted with the dispersed flow equation using 

theoretical HRT, pond dimensions, and ambient temperature (von Sperling 2005). However, this is not the case for 

viruses—there was only a weak to moderate correlation between theoretical HRT and virus removal in WSP 

systems (see Chapter 3), and 14.5 to 20.9 days of retention were required on average to achieve each log10 virus 

reduction (the 95th percentile was 54 days).  

As described above, the use of the UASB reactor for domestic wastewater treatment in developing 

countries with tropical climates is becoming more common, especially in combination with WSPs. With respect to 

the water reuse implications of this trend, it appears that enteric viruses may become concentrated in the granular 

sludge formed in the sludge blanket. Viruses exiting the reactor also appear to be more associated with smaller, non-

settleable particles. Virus-particle associations and virus removal in UASB reactors and WSPs appears to be 

different for different virus types (see Section 4.3). The results from the research presented in Chapter 4 of this 

dissertation generally do not support virus settling in WSPs (with the possible exception of AdV in WSPs following 



www.manaraa.com

134 

UASB reactors). Because viruses were found to become volumetrically-concentrated in UASB sludge, some of 

these viruses may be removed from the reactor when sludge is evacuated. Because of this, several precautions 

should be taken by system operators to reduce risk during sludge disposal from these systems. For example, due to 

their small size, viruses in bioaerosols can travel orders of magnitude farther than other pathogens (Prussin et al. 

2014); the flow of sludge removed from UASB reactors should remain laminar and quiescent, as turbulence can 

aerosolize viruses. Also, sludge removed from UASB reactors should be sufficiently stabilized prior to allowing 

close contact between sludge and people. Research may be needed to determine if viruses are as readily inactivated 

in UASB reactor sludge as they are in other types of wastewater sludge (e.g., activated sludge), for which more data 

exists (e.g., Dumontet et al. 1999; Sidhu and Toze 2009). 

Viruses leaving UASB reactors were found to be associated with small, non-settleable particles (see 

Chapter 4). Most of these particles are likely too small to settle in WSPs. The inactivation of particle-associated 

viruses was not part of the scope of this dissertation, but should be examined in future research. Viruses in WSPs 

associated with particles that are too small to settle may decay at a faster rate, perhaps due to enzyme activity from 

other microbes in the particle or due to the closer proximity of the virus to reactive species created when sunlight is 

absorbed by organic material in the particle (indirect exogenous sunlight inactivation). Alternatively, these small 

particles may protect some viruses from direct sunlight damage, causing them to decay at a slower rate. The decay 

rates for these viruses is likely dependent on the characteristics of the virus and the particle (refer to Section 3.2.3 of 

this dissertation, Lytle and Sagripanti (2005), Mattle et al. (2015) for a more in-depth discussion about this topic).  

With the exception of the culturable enterovirus results in the Yungas WSP systems (Section 4.2) and the 

F+ coliphage results from study of virus-particle associations in the Belding WSP system (Section 4.3.3.3), 

measurements of other viruses were made using molecular methods, which do not indicate the viability of the virus 

(only the presence of an intact portion of its DNA or RNA genome). Nevertheless, naked viral nucleic acids 

(especially RNA) will show measureable decay in water within several days (Walters et al. 2009). Also, virus 

genome damage resulting in the loss of viability can block enzymes used in RT-qPCR (e.g., Taq polymerase, reverse 

transcriptase), and cause the loss of a qPCR signal, especially if the damage occurs near the targeted region (Pecson 

et al. 2011). Still, virus measurements based on molecular analyses (e.g., qPCR or RT-qPCR) should not be directly 

compared to virus measurements made using culture methods (e.g., coliphage plaque assay or culturable enterovirus 

assay). 
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6.3 Water Reuse and Microbial Risk 

Used alone, WSP systems may not always provide sufficient removal of all pathogen types for safe, 

unrestricted water reuse, especially in developing country settings if the systems are not adequately maintained. The 

two WSP systems in Cochabamba, Bolivia had very poor pathogen removal efficiencies, due to the lack of 

maintenance (see Section 5.3). Even the well-maintained WSP system in Yungas, Bolivia, with a theoretical HRT of 

more than 25 days, still required an additional 1- to 2-log10 removal of viruses in order for safe water reuse for 

irrigation (see Section 4.2). The UASB-Pond system, with a similar theoretical overall hydraulic retention time, and 

viruses that were more associated with particles, required an additional 2.5- to 4.5-log10 removal for safe reuse.  

Farmers value the resources in wastewater, and water reuse for irrigation allows for synergy between 

multiple SDGs. Farmers in the Cochabamba Valley not only help maintain the grounds where WSPs are located, 

some of them also utilize on-farm treatment methods that reduce the overall health burden associated with water 

reuse (see Chapter 5). Still, without training, equipment, and other resources, most farmers will not be prepared to 

monitor pathogen removal. Pathogen removal is also not likely the farmer’s top priority. Furthermore, if municipal 

or community wastewater authorities do not communicate and coordinate with farmers, the overall wastewater 

management system may not operate as it is intended. In the Cochabamba Valley, modifications made to the 

downstream irrigation canals by farmers may have altered flow conditions in WSPs, causing short-circuits and less-

efficient pathogen removal. In order to avoid the stigmatization of wastewater reuse, farmers should be given credit 

for implementing on-farm interventions that reduce microbial risks.  

QMRA is the approach recommended by the WHO for safe water reuse planning purposes, however its use 

may not always be practical for every individual water reuse project, due to the large amount of data needed to 

complete QMRAs. These data are often scarce in developing country settings (Howard et al. 2006), and scarce data 

leads to risk estimates with a greater uncertainty (see Section 5.3). QMRA can be useful, however, to characterize 

the effectiveness of a particular combination of wastewater treatment technologies, provided there is sufficient 

understanding about their effectiveness at removing pathogens. A sensitivity analysis of the QMRA developed for 

this dissertation (Section 5.3) revealed that the variability and uncertainty associated with cultural and environmental 

factors affecting exposure to pathogens may correlate more with health outcomes than the variability and uncertainty 

associated with factors related to disease vulnerability. This suggests the need to invest in the evaluation of 

interventions that reduce exposure to pathogens, particularly new technologies or novel treatment approaches. For 
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natural wastewater treatment systems, that would require developing models that accurately predict the removal of 

different types of pathogens based on environmental and operational parameters (as has been done for coliform 

bacteria, see von Sperling (2005)). For viruses, it may also be necessary to develop models based on virus 

characteristics (e.g., genome type, enveloped vs. non-enveloped). 

 

6.4 Moving Forward: An Integrated Approach to Wastewater Treatment and Safe Water Reuse 

With the adoption of the new SDGs, natural wastewater systems should and will remain an important part 

of the overall solution for small cities and towns in industrialized and developing countries. However, these natural 

systems are likely to be used more often in combination with other technologies that may be optimized for a variety 

of treatment objectives, including energy recovery. The simultaneous recovery of water, nutrients, and energy 

resources from wastewater could contribute to a variety of the SDGs, including targets associated with Goals 2, 6, 

and 7. In order to safely reuse water (i.e., SDG Target 6.3), pathogen removal is required.  

In order for natural wastewater systems to be more resilient with respect to pathogen removal, they should 

be multifarious (incorporate a diverse array of technologies and with management input from various stakeholder 

groups) and redundant (provide multiple barriers for the removal of pathogens). Different types of pathogens are 

removed with varying efficiencies in different types of natural wastewater treatment systems. Multifarious systems 

that incorporate several different types of treatment units, including surface flow (e.g., WSPs) and subsurface flow 

units (e.g., subsurface wetlands, bank filtration systems), may provide better overall removal of all pathogen types 

(viruses, bacteria, protozoan, helminth eggs). Redundant systems will help improve resiliency in the event of 

technical or operational failures of one part of the system. For water reuse planning purposes, multiple barriers can 

be incorporated into the overall wastewater management plan using the sanitation chain approach (Figure 25), which 

is based on concepts presented by Stenström et al. (2011) and the findings presented in this dissertation. For 

example, water reuse systems could include onsite or decentralized collection and treatment of wastewater (to 

provide a preliminary barrier for pathogens), a centralized or semi-centralized wastewater treatment system (to 

provide a secondary barrier for pathogens), and an on-farm water treatment system (to provide a tertiary barrier for 

pathogens). Additional health protection measures, such as improved irrigation techniques or the washing of 

irrigated produce, can also be implemented to reduce the contamination of wastewater-irrigated produce.  
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Figure 25. Proposed sanitation chain for sewerage systems that allows for safe water reuse by incorporating 
on-farm treatment in addition to centralized or semi-centralized wastewater treatment. 

This sanitation chain approach can be integrated with traditional sewerage systems (which combine 

greywater, urine, and feces or blackwater into the same waste stream), or with segregated sewerage systems (which 

separate urine, greywater, or blackwater into different waste streams). Greywater and urine can be effectively 

managed and reused or returned to the environment at the decentralized level (onsite), since the concentration of 

pathogens in those waste streams are generally much lower than they are in feces or blackwater. It also applies to 

onsite sanitation systems, where the liquid fraction is discharged to a leach field and the solid portion (septage) is 

removed from the site and conveyed to a centralized treatment facility.  

Instead of being managed solely by public sector or community authorities, new stakeholders, such as 

farmers, should be integrated into overall regional wastewater management and sanitation programs. They should be 

trained in the operation and maintenance of treatment technologies used in the overall Sanitation Chain and credited 

for contributions they make that improve the overall safety of water reuse practices. Simple, on-farm treatment 

methods, such as riverbank filtration, can result in significant reductions of health burdens associated with water 

reuse, and their use should be encouraged. Outputs from the centralized facility (whether liquid or solid) can still be 

treated on the farm prior to reuse, to provide an extra layer of redundancy in the overall sanitation chain.  
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APPENDIX A: SUPPORTING INFORMATION FOR CHAPTER 3 

A.1 Calculation of S90 Values for Virus Solar Disinfection 

The S90 values for virus solar disinfection studies were estimated using the equation: 

  (A1) 

where Es is the full spectrum solar irradiance (W/m2), LRV is the log10 reduction value reported for the virus after 

time t, and 0.0036 is a conversion factor (W·h to MJ). If solar insolation was not reported, values from the U.S. 

National Aeronautics and Space Administration (NASA 2014) for average solar insolation at the particular 

geographic location of the experiment were used. 

 

A.2  Calculation of Virus Concentrations from Presence-Absence Data 

For studies in which authors only used semi-quantitative methods (i.e. reported only the presence or 

absence of viruses in replicate samples), the mean concentration (ȗ) of viruses was calculated using a maximum 

likelihood estimator (Jarvis et al. 2010), setting the derivative of the log-likelihood function equal to zero, and 

solving for ȗ. For experiments performed with a single dilution level, this equation simplifies to: 

  (A2) 

where n is the total number of replicates, x is the number of replicates with positive virus identification, d is the 

dilution level, and w is the volume of sample analyzed. 

 

A.3  Methods for Systematic Literature Review of Virus Removal in Field Studies 

A systematic review of studies on virus or bacteriophage removal in WSPs was carried out by searching for 

relevant keywords (virus, phage, coliphage, bacteriophage, pond, lagoon, stabilization, anaerobic, facultative, 
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maturation, polishing) in the following databases: ScienceDirect, Web of Science, ISI Web of Knowledge, PubMed, 

Academic Search Premier, JSTOR, and Google Scholar. Peer-reviewed journal articles, conference proceedings, 

theses and dissertations were all considered. In addition, a Google search was used to identify reports produced by 

government agencies. Similar searches were also performed on Google Scholar using keywords in Spanish (laguna 

de estabilización, virus entérico, colifagos) and in French (bassin de stabilization, bassin de lagunage, lagune de 

stabilization, virus entérique, bactériophage). Finally, the reference sections of all publications were reviewed to 

identify additional literature sources.  

Systems with a greater number of ponds in series were more likely to include at least one maturation pond 

(Figure A1). Virus removal efficiency is expected to be highest for maturation ponds, so there is a possibility that 

the differences in the configurations of each pond system may bias some of the results of the statistical analyses. 

 

 

Figure A1. Percentage of systems with particular types of ponds (anaerobic, facultative, maturation, 
polishing, or aerated). 
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Figure A2. Different methods and host cell lines or bacteria strains used for enteric virus (top) and 
bacteriophage (bottom) assays. 
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Figure A3. Average daily solar insolation at the latitude of the waste stabilization pond system vs. the ratio of 
the hydraulic retention time to the mean log10 virus removal, for systems with four or more ponds in series 
(●) and systems with fewer than four ponds in series (×). Error bars show the standard deviation (only for 
systems with four or more ponds in series, for clarity). 

Table A1. Pearson’s correlation coefficients for the log-transformed ratio of the theoretical hydraulic 
retention time to the mean observed log10 removal (LN(HRT-removal ratio)) and the average daily solar 
insolation at the latitude of each wastewater treatment pond system. 

Number of Ponds in 
Series 

Pearson’s Correlation 
Coefficient 

(Pearson’s r) 

Number of Data 
Points 

Probability 
(p-value) 

1 -0.002 32 0.396 
2 -0.149 20 0.318 
3 -0.276 25 0.152 
4 -0.213 10 0.314 

More than 4 -0.602 13 0.026 

All Data  
(any number of ponds) -0.181 100 0.076 

 

A.4  References for Appendix A 

Jarvis, B., Wilrich, C., Wilrich, P.T., 2010. Reconsideration of the derivation of most probable numbers, their 
standard deviations, confidence bounds and rarity values. J. Appl. Microbiol. 109(5), 1660–1667.  

NASA, 2014. Surface meteorology and solar energy. https://eosweb.larc.nasa.gov/sse/ (accessed 8.14.14). 
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APPENDIX B: SUPPORTING INFORMATION FOR SECTION 4.2 

B.1 Synthesis of RNA Oligonucleotide for RNA Purification and Reverse Transcription Control 

A 127 bp RNA oligonucleotide containing the amplicon of an existing Taqman qPCR assay for EAV 

(Svraka et al. 2009) was produced using previously described methods (Ulrich et al. 2010) with the following 

primers targeting the T7 promoter and a portion of the EAV replicase protein: (F) 5’ – AAT TCT AAT ACG ACT 

CAC TAT AGG GTG TCG CTT GTG CTC AAT TTA CTG GGG CAG GTA GGC TAT GTA GCT CTG CAA 

AGA TCG AAC ACA GTG CAA GGA ACA TAA GCT GCA TCA AAG GTG GAA CGA GCT ACA TAG CC – 

3’ and (R) 5’ – CGA TTG CGG CAG AGG TAC AGA ATA GCA AAG CTG CAA AGA TCG AAC ACA GTG 

CAA GGA ACA TAA GCT GCA TCA AAG GTG GAA CGA GCT ACA TAG CC– 3’. The resulting EAV RNA 

oligonucleotides were quantified using the NanoDrop Spectrophotometer ND-100 (Wilmington, DE), preserved 

with (1:1) RNA storage buffer (8 M guanidinium isothiocyanate, 80 mM Tris-HCl [pH 8.5], 24 mM MgCl2, and 140 

mM KCl), and stored at -80°C in single use volumes to prevent freezing and thawing.  

 

B.2  Quantitative PCR Standard Curves 

The standard curves for each of these assays were generated from purified plasmids manufactured by 

Integrated DNA Technologies (pIDTSMART with ampicillin resistance; Coralville, IA) containing the 

corresponding target sequence derived from GenBank sequences: NC_002532.2 (EAV), NC_001959.2 (NoVGI), 

AB550911.1 (PMMoV), and HM627561.1 (RV). The EAV, NoVG1, and RV standard curves were composed of a 

seven-point, 1:10 dilutions series ranging from 10 to 1×107 plasmids/reaction. The PMMoV standard curve was 

composed of a six-point, 1:10 dilution series ranging from 100 to 1×107 plasmids/reaction. 

 

B.3  Molecular Quantification of EAV, NoVGI, RV, and PMMoV 

Five 96-well plates were analyzed, each containing the standard dilution series in duplicate as well as no-

template controls. Each 25 μl qPCR reaction targeting EAV, NoVGI, and RV contained 2 μl of sample cDNA and 

the following final concentrations: 1x TaqMan Environmental Mastermix 2.0 without Uracil N-Glycosylase (UNG) 
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(Life Technologies, Grand Island, NY), 500 nM of each primer, and 250 nM of probe (Table B1). For PMMoV, the 

qPCR reaction was slightly modified from Rosario et al. (2009) so each primer and probe had a final concentration 

of 400 nM and 125 nM, respectively (Table B1). Each sample was analyzed in duplicate and with an additional 1:10 

dilution (to identify PCR inhibition), using an ABI7500 Real Time PCR system (Life Technologies). The following 

qPCR conditions, with data collection occurring at the elongation step, apply to the EAV and NoVGI analyses: 

denaturation step at 95°C for 10 min, followed by 40 cycles of 95°C for 10 s, 52°C for 20 s, and 60°C for 60 s. For 

the RV and PMMoV assays, the same conditions were used, except the annealing step was executed at 43°C for 20 s 

and 53°C for 60 s, respectively.  

 

B.4  Molecular Quantification of EAV, NoVGI, RV, and PMMoV using the ‘Pooled Approach’ 

Quantitative PCR (qPCR), using published primers and probes, was used to determine the concentrations of 

RV, NoVGI, and PMMoV as well as the EAV purification control in each sample (Table B1) (Svraka et al. 2009, 

Rosario et al. 2009). In order to account for the stochastic interplate variability inherent to qPCR analyses, the 

‘pooled approach’ was used to estimate the number of copies in each unknown sample from the corresponding 

mean Cq value for plasmid standards and unknown samples for each assay (Sivaganesan et al. 2010). Markov chain 

Monte Carlo simulations, using WinBUGS software V1.4.3 (Imperial College and Medical Research Council, UK) 

were carried out with 50,000 iterations and a burn-in period of 10,000. A modified version of the code provided by 

Mano Sivaganesan was used and is provided below. Slope and y-intercept parameters were assumed to be normally 

distributed for each run, and the gamma distribution (with shape and scale parameters equal to 0.01) was used as a 

prior distribution for the precision of the slope and y-intercept distributions, instead of the DuMouchel priors 

(Sivaganesan et al. 2010). The use of either of these two prior distributions tends to yield similar results 

(Sivaganesan et al. 2008).  

 
B.5  WinBUGS Code (Modified from Sivaganesan et al. 2010) 

model 
 { 
   
# DEFINE VARIABLES: 
 # Y = Ct measurement of standards (plasmids) 
 # x = copy numbers of standards (plasmids) 
 # run = plate number 
 # alpha = y intercept of the standard curve 
 # beta = slope of standard curve 
 # n = total number of data points in the standard curve 
 # p = number of plates (aka number of runs) 
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 # s = number of different sample points (non-replicate unknowns) 
 # r = number of replicates per (unknown) sample point 
   
  for (i in 1 : n){ 
   Y[i] ~ dnorm(mu[i], tau[run[i]]) 
   mu[i] <- alpha[run[i]] + beta[run[i]] *(log(x[i]))/log(10) 
   }  
 
  for (i in 1 : p){  
   alpha[i] ~ dnorm(alphab, tau.a) 
   beta[i] ~ dnorm(betab, tau.b) 
   } 
    
  for (i in 1 : p){ 
   tau[i] ~ dgamma(0.001, 0.001) 
   } 
   
  alphab ~ dnorm(0.0,1000000)  
  betab ~ dnorm(0.0,1000000)  
  tau.a~ dgamma(0.01,0.01) 
  tau.b~ dgamma(0.01,0.01) 
   
# This part of the code predicts the concentration (copy numbers) in unknown samples 
# It also takes the mean of any replicates 
 
  for (i in 1 : s){ 
   for (j in 1 : r){ 
    copy[i,j]<-(ct[i,j]-alpha[1])/beta[1] 
    } 
   copymean[i]<-mean(copy[i,]) 
   } 
  } 
  
  
# Here, list the data for the following variables: 
 # n, the number of data points from the standard curves 
 # e.g. if you run 5 plates, with 7-point standard curves in duplicate, n = 5 * 7 * 2 = 70 
 # p, the number of plates that you ran 
 # s, the number of non-replicate unknown sample points 
 # r, the number of replicates per unknown sample point 
list(n=70, p=5, s=32, r=3) 
 
# Here, add the data from the standard curves from all runs (can copy & paste from Excel) 
# If some of the standard curve points are not used or unknown, write NA for the Y[] value 
run[] x[] Y[] 
1 10000000 14.83086777 
1 1000000 17.82779503 
1 100000 21.80016327 
1 10000 25.55435562 
1 1000 28.44073677 
1 100 31.74236107 
1 10 35.72465515 
1 10000000 14.91196918 
1 1000000 17.11416817 
1 100000 21.56788445 
1 10000 24.45992279 
1 1000 27.21128464 
1 100 31.74817085 
1 10 37.29232788 
2 10000000 16.56287956 
2 1000000 20.03527069 
2 100000 22.42720604 
2 10000 26.68701172 
2 1000 30.17602921 
2 100 33.48706818 
2 10 38.01969528 
2 10000000 15.01192474 
2 1000000 19.6750927 
2 100000 23.39949226 
2 10000 27.08206177 
2 1000 28.98237991 
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2 100 33.38588333 
2 10 NA 
3 10000000 15.28802204 
3 1000000 20.29097366 
3 100000 23.32222176 
3 10000 26.97269249 
3 1000 31.19098663 
3 100 33.51592636 
3 10 NA 
3 10000000 15.20750141 
3 1000000 20.05568886 
3 100000 23.38633537 
3 10000 23.36335182 
3 1000 30.89651108 
3 100 33.61697388 
3 10 36.5364151 
4 10000000 17.95369339 
4 1000000 20.91512299 
4 100000 24.97530174 
4 10000 26.61340714 
4 1000 32.10835648 
4 100 35.57624054 
4 10 40.97258377 
4 10000000 17.97052383 
4 1000000 20.90886307 
4 100000 24.94770241 
4 10000 28.26919174 
4 1000 31.81770325 
4 100 31.98748589 
4 10 39.20402145 
5 10000000 NA 
5 1000000 19.62317467 
5 100000 22.38277245 
5 10000 25.89981651 
5 1000 30.07412529 
5 100 33.0720253 
5 10 NA 
5 10000000 16.38263321 
5 1000000 19.39556313 
5 100000 23.35000038 
5 10000 26.49247742 
5 1000 29.05232811 
5 100 33.49391174 
5 10 38.0681839 
END; 
 
 
# Here, list the data for the unknown samples, in the following order: 
# 1st sample - replicate 1, replicate 2, replicate 3, etc. then 2nd sample - replicate 1, 2, 3, 
etc. 
 
list(ct = structure(.Data = c(27.72813797, 27.42074203, 27.68983841, 27.49964523, 27.48989868, 
27.78788757, 30.5907135, 27.84589005, 27.85700989, 29.96239471, 28.98430252, 29.90208244, 
36.87768555, 38.62608337, 36.61364746, 32.28911591, 33.10028076, 32.98776245, 30.69845581, 
30.86000824, 31.17842484, 29.79073334, 30.05471039, 30.50596237, 32.21622467, 33.21928406, 
31.26853561, 32.55735779, 33.80277252, 32.56066513, 33.81419754, 35.71244812, 34.47873306, 
35.50968552, 36.70432663, 35.96899414, 35.23744202, 36.91765594, 34.75976944, 37.86174011, 
36.44485474, 37.3629837, 37.20646286, 37.44822311, 36.30540466, 39.00939178, 38.7159729, 
31.99326706, 39.37914658, 40.21757889, 37.76005936, 36.64976501, 39.22754669, 37.42768097, 
38.54289246, 50, 38.98463058, 39.58310318, 37.52623367, 33.18672943, 31.402565, 33.59807587, 
37.26535416, 33.87909698, 35.83087158, 38.61930847, 50, 39.93122101, 50, 38.06398773, 
38.32701874, 50, 50, 39.03576279, 38.91719437, 50, 50, 39.22404099, 29.45872879, 31.00250626, 
29.89751053, 30.20918465, 31.61616516, 30.94333267, 30.95830536, 32.55595016, 31.27261162, 
41.92402267, 35.60179138, 34.66479492, 34.39841461, 33.24088287, 32.35334778, 33.12833405, 
31.98050308, 32.73188019), .Dim = c(32, 3))) 
 
# Note, for Dim above, enter total # of samples followed by # of replicates per sample 
 
# These are initials for the parameters that define the standard curve slope and y-intercept 
list(alpha=c(20, 31, 25 , 18, 19), beta= c(-3, -2, -2.5, -1, -0.7), tau =c(1, 1, 1, 1, 1), alphab 
= 0.01, betab=0.05) 
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In addition to calculating the copy number measured from a Cq value, the ‘pooled approach’ also produces 

credible intervals associated with each calculation and these values are presented for both the analyses of virus 

concentration and virus-particle associations in the WSP systems (Tables B2 and B3, respectively). 

 

B.6  Exposure via the Ingestion of Water vs. Soil 

It has been commonly assumed that farmers irrigating with wastewater and children playing in fields 

accidentally ingest either a small volume of water (typically 1 ml) or a small volume of soil (typically 10 – 100 mg) 

per day of exposure. Agricultural soils in Bolivia have bulk densities (ρ) that typically range from 1.3 to 1.6 g/ml 

(Vargas Rojas 2009, Aguilera et al. 2012) and most agricultural soils have a moisture saturation point of ~15% 

(Rzezutka and Cook 2004). Assuming that up to 90% of viruses in irrigation water may adsorb to surface sites on 

the soils (Kimura et al. 2008), the dose of viruses that would correspond with the accidental ingestion of 100 mg of 

soil that has been irrigated once would be equal to the amount of viruses in 0.008 to 0.01 ml of irrigation water (VL 

= 0.90 * 0.15 * (100 g) / (1.6 g/ml) = 0.008; VU = 0.90 * 0.15 * (100 g) / (1.3 g/ml) = 0.01). If the same ground gets 

irrigated 75 times in an irrigation season and new viruses are adsorbed every time, then the ingestion of 100 mg of 

soil would be nearly equivalent (slightly less than) to the ingestion of 1 ml of water.  

 

B.7  Quantitative Microbial Risk Assessment (QMRA) Model 

NoV has been recently recommended by the WHO as a suitable reference viral pathogen for QMRA 

models of wastewater irrigation (Mara et al. 2010). Given its high infectivity (Le Pendu et al. 2006) and its role in 

water- and food-related outbreaks (Goodgame 2007), it was used as a reference viral pathogen for adult farmers and 

children. While there is no available data for the prevalence of NoV in Bolivia, in Chile, NoV is almost as common 

as rotavirus and is a significant cause of moderate to severe and endemic acute diarrhea episodes in children 

(O’Ryan et al. 2010). NoV causes a disease burden that may range from 0.000371 to 0.00623 DALYs per case of 

illness (Mok et al. 2014). There is also currently no vaccine or evidence of acquired resistance to NoV in Bolivia. 

While a small percentage of people may have natural genetic resistance (Le Pendu et al. 2006), there are no 

available data for Bolivia. Therefore, it was assumed that the fraction of the population with genetic resistance to 

NoV infection (pr) is uniformly distributed from 0 to 0.2 (Mok et al. 2014).  
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RV was only considered to be a hazard for children at play because adults typically acquire resistance 

(Chiba et al. 1986). Bolivia has historically experienced the highest annual rotavirus-related child mortality rate 

(2.95 × 10-3) out of all Caribbean and Latin American countries (Linhares et al. 2011), which prompted the 

introduction of a RV vaccine in in Bolivia in 2008. However, 22% of children in Bolivia are unvaccinated (WHO 

2014). Furthermore, the efficacy of the RV vaccine in Bolivia has been predicted to be only 69% (95% confidence 

interval of 54% to 79%) (Patel et al. 2013). It was assumed that the disease burden per case of RV is between 0.015 

and 0.026 DALYs per case (Havelaar and Melse 2003, Prüss-Üstün et al. 2008) 

EV comprise a diverse group of enteric viruses that are capable of causing a wide range of diseases, 

including meningitis, hepatitis, myocarditis, pneumonia, and the common cold (Melnick 1989). EV was also 

considered in the QMRA model for adults and children. Given the vast diversity of EV, it was assumed that every 

person may have susceptibility to infection from at least one of the types of viruses in this group (i.e. Sf = 1) and the 

disease burden per case of illness was between 0.0024 and 0.015 DALYs per case (Howard et al. 2007, Prüss-Üstün 

et al. 2008).  

 

B.8  Dose-Response Models 

The QMRA model was designed to predict a log reduction value, given a health target of <10-4 disability-

adjusted life years (DALYs) per person per year. Equation S1, which is the dose-response model for NoV, is the 

Pfaff transformation of a model from Teunis et al. (2008). This model was used with fit parameters from the 

combined inocula dataset (8fIIa + 8fIIb) reported by Teunis et al. (2008), because it makes no assumptions about the 

aggregation state of the viruses. The Pfaff transformation of the model was used as a close approximation here, 

assuming all doses ≤33,323, because the fit value for parameter aNV provided by Teunis et al. (2008) exceeds a 

constraint of the Gauss hypergeometric function used in Equation S1 (Barker et al. 2013, Mok et al. 2014). The 

dose-response model for RV (Equation S2), is the exact Beta-Poisson model (Teunis and Havelaar 2000). It is used 

here instead of the “approximate” Beta-Poisson model, which has been widely used in the past with RV for QMRA 

studies (van Ginneken and Oron 2000, Mara et al. 2007, Seidu et al. 2008, Soller et al. 2010). This approximate 

model is only valid when β » 1 and α « β (Teunis and Havelaar 2000), conditions which are not satisfied for RV. 

The RV dose-response model was also used as a surrogate dose-response model for EV, as has been done by others 

(e.g. Schijven and de Roda Husman 2006), to provide a conservative estimate of infection probability for the wide 
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range of viruses that comprise the EV group. For comparison, an exponential dose-response model (Equation S3) 

was also used for EV, with fit parameter k determined using data from a study where pigs were challenged with 

porcine enterovirus type 7 (Cliver 1981, Huang 2013).  

  (B1) 

  (B2) 

  (B3) 

The dose-dependent conditional probability of illness for those developing a NoV infection (pill|inf NV) was 

modeled using Equation S4 (Teunis et al. 2008), where ηNV and rNV are model parameters with best fit values 

reported by Teunis et al. (2008). For RV and EV, this probability was modeled using Equation S5 (Mok et al. 2014), 

where I is a parameter describing the proportion of infected people who develop an illness. 

  (B4) 

  (B5) 

Given the convoluted nature of the system of equations described in Section 2.8 of the manuscript, the 

concentration (c) cannot be solved for analytically. ‘R’ Version 3.1.0 (The R Foundation for Statistical Computing 

2014) was used to solve for c using an iterative approach. The maximum tolerable concentration was first set to a 

value of zero, then “stepped up” in increments of 0.1 (for NoV) or 0.00001 (for RV and EV), for a total of 10,000 

iterations. Once the value of c produced an estimate of disease burden (DB) that exceeded a defined percentile of the 

maximum tolerable estimate of DB, the loop specifies that c stay at the same value (instead of continuing to be 

“stepped up”). At the end of the loop, the value of c was printed. A dummy variable “test” was also computed and 

printed to ensure that the loop did not run through all of the iterations without finding an appropriate solution for c.  
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B.9  ‘R’ Code Used to Solve for LRV for NoV 

library(hypergeo) 
 DB_limit <- 0.0001 #Regulatory limits specified by WHO (2006) 
 iter <- 10000 
 step <- 0.1 
 a <- 0.9997 #Point estimates for the dose-response model parameters (Teunis et al. 2008) 
 alpha <- 0.04 
 beta <- 0.055 
 eta <- 0.00255 
 r <- 0.086 
 
#Assumptions about exposure, susceptible fraction of population, disease burden 
 Sf <- runif(iter,0.8,1) 
 B <- runif(iter,0.000371,0.00623) 
 n <- 75 
 V <- 1 
 
#Pfaff Transformation of Eq 4 and Eq 5 (Teunis et al. 2008)  
 a1 <- (1-a)/a 
 pinf <- function(c){Re(1-(hypergeo(beta,c*V*a1,alpha+beta,a)*((1/a1)^(-c*V*a1))))} 
 pillinf <- function(c){(1-(1+eta*c*V)^(-r))} 
 
#Measured effluent concentrations 
 logconc3P <- rnorm(iter,2.56,0.27) 
 conc_2_3P <- quantile(10^logconc3P, c(0.025)) 
 conc_10_3P <- quantile(10^logconc3P, c(0.10)) 
 conc_25_3P <- quantile(10^logconc3P, c(0.25)) 
 conc_med_3P <- quantile(10^logconc3P, c(0.50)) 
 conc_75_3P <- quantile(10^logconc3P, c(0.75)) 
 conc_90_3P <- quantile(10^logconc3P, c(0.90)) 
 conc_98_3P <- quantile(10^logconc3P, c(0.975)) 
 
 logconcUB <- rnorm(iter,2.34,0.31) 
 conc_2_UB <- quantile(10^logconcUB, c(0.025)) 
 conc_10_UB <- quantile(10^logconcUB, c(0.10)) 
 conc_25_UB <- quantile(10^logconcUB, c(0.25)) 
 conc_med_UB <- quantile(10^logconcUB, c(0.50)) 
 conc_75_UB <- quantile(10^logconcUB, c(0.75)) 
 conc_90_UB <- quantile(10^logconcUB, c(0.90)) 
 conc_98_UB <- quantile(10^logconcUB, c(0.975)) 
 
#Estimate required log reduction to meet WHO recommendations  
#2.5th percentile 
c <- 0 
for(i in 1:iter){ 
 pill <- pinf(c) * pillinf(c) 
 Pill_a <- 1 - (1 - pill)^n 
 DB <- Pill_a * B * Sf 
 ifelse(quantile(DB, c(0.025)) < DB_limit, c <- c + step, c <- c) 
 } 
 
 LRV_2_3P <- log10(conc_2_3P) - log10(c-step) 
 LRV_2_UB <- log10(conc_2_UB) - log10(c-step) 
 print(LRV_2_3P) 
 print(LRV_2_UB) 
 print(c-step) 
 test <- ((iter * step) - c)/step 
 print(test) 
 
#10th percentile 
c <- 0 
for(i in 1:iter){ 
 pill <- pinf(c) * pillinf(c) 
 Pill_a <- 1 - (1 - pill)^n 
 DB <- Pill_a * B * Sf 
 ifelse(quantile(DB, c(0.1)) < DB_limit, c <- c + step, c <- c) 
 } 
 

LRV_10_3P <- log10(conc_10_3P) - log10(c-step) 
 LRV_10_UB <- log10(conc_10_UB) - log10(c-step) 
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 print(LRV_10_3P) 
 print(LRV_10_UB) 
 print(c-step) 
 test <- ((iter * step) - c)/step 
 print(test) 
 
#25th percentile 
c <- 0 
for(i in 1:iter){ 
 pill <- pinf(c) * pillinf(c) 
 Pill_a <- 1 - (1 - pill)^n 
 DB <- Pill_a * B * Sf 
 ifelse(quantile(DB, c(0.25)) < DB_limit, c <- c + step, c <- c) 
 } 
 
 LRV_25_3P <- log10(conc_25_3P) - log10(c-step) 
 LRV_25_UB <- log10(conc_25_UB) - log10(c-step) 
 print(LRV_25_3P) 
 print(LRV_25_UB) 
 print(c-step) 
 test <- ((iter * step) - c)/step 
 print(test) 
 
#Median 
c <- 0 
for(i in 1:iter){ 
 pill <- pinf(c) * pillinf(c) 
 Pill_a <- 1 - (1 - pill)^n 
 DB <- Pill_a * B * Sf 
 ifelse(quantile(DB, c(0.5)) < DB_limit, c <- c + step, c <- c) 
 } 
 
 LRV_med_3P <- log10(conc_med_3P) - log10(c-step) 
 LRV_med_UB <- log10(conc_med_UB) - log10(c-step) 
 print(LRV_med_3P) 
 print(LRV_med_UB) 
 print(c-step) 
 test <- ((iter * step) - c)/step 
 print(test) 
 
#75th percentile 
c <- 0 
for(i in 1:iter){ 
 pill <- pinf(c) * pillinf(c) 
 Pill_a <- 1 - (1 - pill)^n 
 DB <- Pill_a * B * Sf 
 ifelse(quantile(DB, c(0.75)) < DB_limit, c <- c + step, c <- c) 
 } 
 
 LRV_75_3P <- log10(conc_75_3P) - log10(c-step) 
 LRV_75_UB <- log10(conc_75_UB) - log10(c-step) 
 print(LRV_75_3P) 
 print(LRV_75_UB) 
 print(c-step) 
 test <- ((iter * step) - c)/step 
 print(test) 
 
#90th percentile 
c <- 0 
for(i in 1:iter){ 
 pill <- pinf(c) * pillinf(c) 
 Pill_a <- 1 - (1 - pill)^n 
 DB <- Pill_a * B * Sf 
 ifelse(quantile(DB, c(0.9)) < DB_limit, c <- c + step, c <- c) 
 } 
 
 LRV_90_3P <- log10(conc_90_3P) - log10(c-step) 
 LRV_90_UB <- log10(conc_90_UB) - log10(c-step) 
 print(LRV_90_3P) 
 print(LRV_90_UB) 
 print(c-step) 
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 test <- ((iter * step) - c)/step 
 print(test) 
 
#97.5th percentile 
c <- 0 
for(i in 1:iter){ 
 pill <- pinf(c) * pillinf(c) 
 Pill_a <- 1 - (1 - pill)^n 
 DB <- Pill_a * B * Sf 
 ifelse(quantile(DB, c(0.975)) < DB_limit, c <- c + step, c <- c) 
 } 
 
 LRV_98_3P <- log10(conc_98_3P) - log10(c-step) 
 LRV_98_UB <- log10(conc_98_UB) - log10(c-step) 
 print(LRV_98_3P) 
 print(LRV_98_UB) 
 print(c-step) 
 test <- ((iter * step) - c)/step 
 print(test) 

 

B.10  Stokes’ Equation and Settleable Particles in the WSP Systems 

The terminal velocity of a spherical particle in a laminar fluid dynamics regime is described by Stokes’ 

equation (Equation S6), where ρp and ρl are the respective densities of the particle and the liquid (assumed to be 

1,038 kg/m3 and 1,000 kg/m3, respectively), g is the gravitational acceleration constant (9.81 m/s2), d is the cross-

sectional diameter of the particle (180 μm), and ηo is the liquid viscosity (assumed to be 0.001 kg/m·s). Making 

some assumptions about the viscosity and density of the wastewater treatment pond water and the density of 

wastewater flocs (Sears et al. 2006), the terminal settling velocity of a 180-μm floc particle would be approximately 

2.4 m/hr. While flow conditions within a WSP may not be laminar, the Stokes’ equation demonstrates that particles 

with average diameters >180 μm should be capable of settling in a pond with a depth of 1.5 m. This assumption is 

also supported by previous findings that report that wastewater flocs with cross-sectional diameters >180 μm would 

generally settle in a clarifier at a velocity of 0.5 mm/s or higher (Li and Ganczarczyk 1987).  

  (B6) 

B.11  Measurement of Total Solids, Volatile Solids, and Fixed Solids 

Sludge core samples were collected in 2012, with a ½-inch PVC pipe, from the UASB reactor and from the 

facultative pond (near the influent pipe) after the second sampling event (same day as sludge samples that were 

analyzed for culturable enteroviruses). Sludge samples were sent in duplicate to the laboratory at the Centro de 

Aguas y Saneamiento Ambiental (CASA), at the Universidad Mayor de San Simón in Bolivia, to be analyzed for 

total solids, and volatile solids, using the Standard Methods (APHA et al. 2012). The results are in Table B4. 
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Table B1. RT-qPCR primers and probes utilized in this study. 

 
Target Virus   Primer/Probe (5’ to 3’)     Amplicon size (bp) Reference   
    
Equine arteritis virus  CTTGTGCTCAATTTACTGG    115   (Svraka et al. 2009)  
    GGCAGAGGTACAGAATAG 
    TxRed]TGCAGCTTATGTTCCTTGC[BHQ-2] 
 
Norovirus genotype I  CARGCCATGTTYCGYTGGATG    98   (Svraka et al. 2009)  
    CCTTAGACGCCATCATCATTTAC 
    [FAM]TGGACAGGAGAYCGCRATCT[BHQ-1] 
 
Pepper mild mottle virus  GAGTGGTTTGACCTTAACGTTTGA   68   (Rosario et al. 2009)  
    TTGTCGGTTGCAATGCAAGT 
    [FAM]CCTACCGAAGCAAATG[TAMRA] 
 
Rotavirus group A  ACCCTCTATGAGCACAATA    73   (Svraka et al. 2009)  
    GGTCACATAACGCCCCTA 
    [FAM]CTAACACTGTCAAAAACCTAA[TAMRA]



www.manaraa.com

178 

Table B2. The mean (n=3) and standard deviation virus concentration (copies/ml) with the minimum 2.5% credible interval (CI) and maximum 97.5% 
CI for a given triplicate sample collected throughout the three-pond (sites A-D) and UASB-pond (sites F-I) systems. +BLOQ represent samples that 
were positive but below the limit of quantification.  

 

 Rotavirus group A (copies/ml) Norovirus genotype I (copies/ml) Pepper mild mottle virus (copies/ml) 

Site Mean Standard 
Deviation 

2.5%  
CI 

97.5% 
CI Mean Standard 

Deviation 2.5%  CI 97.5% 
CI Mean Standard 

Deviation 2.5%  CI 97.5% 
CI 

A 1,260 407 760 1,932 2,039 229 1,386 3,076 96,684 2,562 79,601 117,738 
B 4,535 1,115 3,097 6,515 2,064 219 1,333 2,944 405,227 112,982 255,222 633,750 
C 1,925 829 847 2,890 1258 834 203 2,349 431,462 271,083 100,674 727,643 
D 741 417 273 1,327 579 221 311 1,140 296,738 119,557 184,467 521,096 
F 211 18 161 265 +BLOQ n/a n/a n/a 52,387 7,407 37,577 70,294 
G 204 36 153 289 73 22 37 144 144,369 59,396 64,109 214,743 
H +BLOQ n/a n/a n/a 241 37 137 389 323,444 128,660 153,080 517,509 
I +BLOQ n/a n/a n/a 407 92 215 687 375,331 65,393 280,490 539,409  
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Table B3. Mean virus concentration (copies/ml) with the minimum 2.5% credible interval (CI) and maximum 97.5% CI for a given triplicate sample 
collected for particle analysis. +BLOQ represents samples that were positive but below the limit of quantification. <LOD represents samples that were 
negative, whose concentration is likely less than that of the detection limit of the assay. 

Site Filter 

Rotavirus group A (copies/ml) Norovirus genotype I (copies/ml) Pepper mild mottle virus (copies/ml) 

Mean 
Standard 
Deviation 2.5%  CI 97.5% CI Mean 

Standard 
Deviation 2.5%  CI 97.5% CI Mean 

Standard 
Deviation 2.5%  CI 97.5% CI 

B 0.45 777 696 226 1,807 182 114 54 441 22,196 12,213 6,642 35,999 
B 180 197 185 28 468 +BLOQ n/a n/a n/a 2,399 418 1,557 3,482 
B 0.45+ 1,647 2,296 19 4,874 111 133 4 376 84,379 77,718 1,992 186,331 
B 0.45T 18,426 12,596 5,598 35,751 666 316 231 1,337 638,551 102,732 445,950 880,780 

C 0.45 505 524 97 1,274 104 43 34 198 24,810 8,279 13,191 38,662 
C 180 241 25 187 306 61 101 1 260 2,240 911 1,250 3,581 
C 0.45+ 659 238 418 961 23 25 1 81 29,101 24,945 1,247 59,705 
C 0.45T 13,238 10,238 1,928 25,485 395 182 160 834 555,564 263,632 215,779 903,669 

D 0.45 111 52 44 186 37 22 9 91 19,899 5,006 13,062 30,480 
D 180 127 70 37 206 +BLOQ n/a n/a n/a 1,449 843 471 2,871 
D 0.45+ <LOD n/a n/a n/a +BLOQ n/a n/a n/a 199 82 103 340 
D 0.45T 5,594 4,519 1,199 11,776 259 114 85 497 509,185 77,710 356,459 687,076 

G 0.45 30 24 12 70 14 5 5 31 226,854 75,022 139,594 368,865 
G 180 <LOD n/a n/a n/a +BLOQ n/a n/a n/a 9,201 4,189 5,494 16,916 
G 0.45+ <LOD n/a n/a n/a +BLOQ n/a n/a n/a 84,211 100,259 5,912 234,297 
G 0.45T 43 n/a 35 53 26 12 10 55 318,742 68,488 228,490 437,389 

H 0.45 28 n/a 22 34 20 12 4 50 40,638 21,448 20,715 77,319 
H 180 <LOD n/a n/a n/a +BLOQ n/a n/a n/a 1,739 1,145 794 3,800 
H 0.45+ 54 n/a 44 66 +BLOQ n/a n/a n/a 807 857 148 1,782 
H 0.45T 24 12 12 41 87 50 25 208 251,697 107,825 147,914 446,693 

I 0.45 19 n/a 15 24 +BLOQ n/a n/a n/a 20,148 14,315 3,873 39,447 
I 180 <LOD n/a n/a n/a 30 45 0 124 20,281 32,849 951 69,185 
I 0.45+ <LOD n/a n/a n/a +BLOQ n/a n/a n/a 1,294 n/a 1,012 1,633 
I 0.45T 30 n/a 24 37 127 51 56 269 394,741 115,162 228,039 592,938 
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Table B4. Total solids, volatile solids, fixed solids, % volatile solids, and % fixed solids (mean +/- standard 
deviation) of the UASB reactor and the facultative pond sludge (n=2) from the UASB-pond and three-pond 
systems, respectively. 

 
Site 

Total Solids (g/L) Volatile Solids 
(g/L) 

Fixed Solids 
(g/L) 

% Volatile 
Solids 

% Fixed Solids 

UASB reactor 285.2 +/- 7.3 210.2 +/- 5.7 75.1 +/- 1.7 73.7 +/- 0.1 26.3 +/- 0.1 
Facultative pond 157.7 +/- 12.8 126.3 +/- 9.2 31.4 +/- 3.5 80.1 +/- 0.6 19.9 +/- 0.6 

 

 
 

 

Figure B1. Modified can crusher used with sterile syringe and filter holder. Craig Carlson is acknowledged 
for the idea and design. Guy Grant is acknowledged for the modification of this can crusher.  
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a) b) 

     
c) d) 

     

 
 
Figure B2. Analysis of the sensitivity of the QMRA model to the assumed volume of wastewater accidentally 
ingested (V) per day of exposure and the number of days of exposure per year (n), for norovirus in a) the 
three-pond system and b) the UASB-pond system, as well as rotavirus in c) the three-pond system and d) the 
UASB-pond system. 
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a) b) 

     

 
 
Figure B3. Analysis of the predicted log reduction value for culturable enteroviruses using the rotavirus exact 
Beta-Poisson dose-response model vs. the porcine enterovirus exponential dose-response model, for a) the 
three-pond system and b) the UASB-pond system. 
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APPENDIX C: SUPPORTING INFORMATION FOR SECTION 4.3 

C.1  Survival Function Used to Determine (RT-)qPCR Process Limits of Detection 

The survival model is described by the following equation, which specifies the probability of amplification 

(P1(d) for a given mean number of target genome copies added to a reaction well (d) and assuming a “survival” 

probability r: 

  (C1) 

Using categorical data for each of the standard curve dilution series (the number of times amplification 

occurred (Xamp,q) in the qth standard dilution series), and the total number of trials for the qth standard dilution (Ns)), 

the Generalized Reduced Gradient (GRG2) Algorithm was used in Microsoft Excel to produce a locally-optimal 

solution for r that minimized the deviance Y (Haas et al. 2014), defined as 

  (C2) 

where fant,q is the anticipated probability of amplification (fant,q = P1(q)), and fobs is the observed fraction of 

amplification (fobs,q = Xamp,q / Ns,q) for the qth standard dilution. 

 

C.2  Salmon Sperm DNA Extraction and Purification Control 

140 ng of salmon sperm DNA was added to the samples from the Belding WSP system as a DNA 

extraction and purification control. Refer to Appendix E, Tables E2 and E3 for more information about the qPCR 

primers and probes used to detect the salmon sperm DNA as well as the qPCR chemistry and cycling conditions. 
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APPENDIX D: SUPPORTING INFORMATION FOR SECTION 5.1 

D.1  Probability Plot Correlation Coefficient Test to Assess Conformity to Lognormal Distribution 

Using the method specified by NIST/SEMATECH (2012), the log-transformed concentrations were plotted 

with the Normalized Z score corresponding with the probability of measuring a given concentration based on its 

rank within the data set, using the following equation: 

 Prob = (Rank – 0.375) / (N + 0.25) (D1) 

Data coming from a log-normal distribution should fall along a straight line (Figure D1). Pearson’s 

correlation coefficients were calculated from the vectors of log-transformed concentrations and Z scores, and 

compared to a table of critical values for different-sized data sets (Table D1), using α = 0.05. 

 

Table D1. Critical values of Pearson’s correlation coefficients based on the probability plot correlation 
coefficient test for normality (NIST/SEMATECH 2012) 

N = number of  
data points α = 0.01 α = 0.05 

3 0.8687 0.879 
4 0.8234 0.8666 
5 0.824 0.8786 
6 0.8351 0.888 
7 0.8474 0.897 
8 0.859 0.9043 
9 0.8689 0.9115 
10 0.8765 0.9173 

 

 

D.2  References for Appendix D 

NIST/SEMATECH. (2012). e-Handbook of Statistical Methods. http://www.itl.nist.gov/div898/handbook/ 
(Accessed on Feb. 22, 2015). 
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Figure D1. Probability plot correlation coefficient tests of pathogen and fecal indicator concentrations in wastewater from the Arani WSP system. 
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APPENDIX E: SUPPORTING INFORMATION FOR SECTION 5.2 

E.1  Description of the Research Site 

The Cochabamba Valley, located in the Andean mountain range, is the third most-populated urban region 

in Bolivia. The department of Cochabamba has the largest area of irrigated agriculture in Bolivia, and also leads the 

country in production of vegetable crops (119,000 metric tons per year), with 86% of this production resulting from 

irrigated agriculture.(Instituto Nacional de Estadistica 2008) However, Cochabamba only receives an average of 482 

mm of rainfall per year, and is one of the most water-scarce urban regions in South America.(Instituto Nacional de 

Estadistica 2011) The Rocha River runs directly through the center of the lower Cochabamba valley, passing within 

10 kilometers of more than one million people who live in this sprawling urban region. The flow rate in this river 

typically ranges from 0.03 to 0.12 m3 s-1 during the month of June (which is the peak of the dry season and the 

irrigation season).(Medrano and Derpic 2006) 

The Rocha River sediment contains 3% gravel, 3% clay, 16% silt, and 81% sand, with only 0.4% (±0.9%) 

organic matter; it has a conductivity of 889.5 μS cm-1, a cationic exchange capacity of 5.64 ±0.52 cmol kg-1, and a 

chloride concentration of 72.5 mg L-1, and a pH of 8.0.(Tapia Vidal and Oporto Pereyra 2012) The well is recharged 

by the river and may also be recharged to a certain extent by ambient ground water, which can originate from bank 

infiltration at upstream sections of the river, excess irrigation water applied to nearby farm plots, or infiltrating 

precipitation. However, the recharge area south of the river consists of clays, sands, and igneous rock with low 

permeability and low recharge capacity.(Renner and Velasco 2000) Lettuce farmers in this region construct small 

rectangular plots (known locally as melgas) separated from each other by small earthen berms. They irrigate using 

border or basin irrigation, adding water to a trench running along one side of the plots, allowing furrows between 

crop rows to fill up sequentially with water (Figure E1). 

 

E.2  Sampling Schedule 

Samples were collected to accommodate local crop rotation patterns. Not all samples were analyzed for all 

parameters on each sampling occasion. Table E1 contains a summary of the complete sampling schedule. Water 
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samples from the Rocha River and the riverbank filtration (RBF) well were analyzed for E. coli, Giardia, and 

Cryptosporidium on four of the nine sampling occasions; and analyzed for coliphage on eight of the nine sampling 

occasions. All qPCR and RT-qPCR assays (for RV, AdV, PMMoV, and HF183) were performed on samples 

collected in replicate (5 to 10 replicates per sample) on a single sampling occasion in June 2013; additional samples 

were collected in November 2014, but not in replicate. Soil samples were only analyzed for coliphage, Giardia, and 

Cryptosporidium (qPCR and RT-qPCR methods were not used for soil samples). Lettuce samples were analyzed for 

coliphage, Giardia, and Cryptosporidium (two to three sampling occasions), and also for PMMoV and AdV (one 

sampling occasion with 15 replicates).  

 

 

Figure E1. Typical rectangular plots separated by earthen berms and used for border/basin irrigation of 
crops in the Cochabamba Valley of Bolivia. 
 
 
E.3  Modified Adsorption-Elution Method 

The modified adsorption-elution method used to concentrate water samples for qPCR and RT-qPCR 

analysis of enteric viruses RV and AdV, and microbial source tracking targets PMMoV and HF183was the same one 

described in Section 4.2 of this dissertation. Briefly, water samples (50 mL for untreated river water, 1,000 mL for 

RBF system water), adjusted to pH 3.0 – 3.5 with 1 M acetic acid, were filtered onto 0.45-μm, 47-mm mixed 

cellulose ester filters (HAWP type, Millipore, Billerica, MA, USA). Filters were placed into bead-beating tubes 

(lysis matrix E, MP Biomedical, Solon, OH, USA). Unlike the adsorption-elution method described in Section 4.2, 

water samples for this study were filtered using a vacuum pump and filter manifold set-up. Stainless steel filter 

holders were rinsed with autoclaved distilled water between samples and disinfected via flaming with ethanol. RBF 

well samples were processed prior to the Rocha River samples, to minimize cross-contamination. Process blanks, 
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using autoclaved distilled water, were collected from each filter holder after all samples had been processed. Filters 

were mechanically disrupted with a Pewee Boxer Model 3115RS-12T-B20 bead beater (Biospec Products) for three 

min during the lysis step. Supernatants from the bead-beating tubes were transferred to clean tubes, then DNA and 

RNA were extracted and purified using the AllPrep DNA/RNA Mini Kit (Qiagen, Valencia, CA, USA), eluting off 

the membranes with 50 µL of molecular grade water; RNA was immediately reverse-transcribed using the 

Superscript III First Strand Synthesis Kit with random hexamers (Invitrogen, Carlsbad, CA, USA).  

 

E.4  Extraction, Purification and Reverse Transcription Controls 

A synthetic equine arteritis virus (EAV) RNA oligonucleotide was used as an RNA purification and 

reverse-transcription control, as described in Section 4.2 of this dissertation. Salmon sperm DNA (Sigma-Aldrich, 

St. Louis, MO, USA) was used as a DNA extraction and purification control (US EPA 2010c). Each sample, as well 

as a calibrator sample containing molecular grade water, was spiked with 5×109 copies of a synthetic EAV RNA 

oligonucleotide and 140 ng of salmon sperm DNA, prior to bead-beating. Based on the recovery of these controls, 

water samples had RNA purification and reverse-transcription efficiencies of 28 – 79%, and DNA extraction and 

purification efficiencies of 30 – 46%. Based on these recoveries, it is likely that the reported virus concentrations 

under-represent actual concentrations. 

DNA/RNA purification blanks and (RT-)qPCR no-template controls were all negative, and process controls 

showed negligible contamination. None of the extraction blank samples exhibited amplification with (RT-)qPCR, 

but the process control samples tested positive for RV and PMMoV, with concentrations below the pLOD of the 

assays. Fortunately, the samples were processed in order from lowest to highest virus concentrations to minimize 

cross-contamination (well water samples were filtered before Rocha River samples), and the process blanks were 

filtered at the end; thus, the observed contamination represents a worst-case contamination scenario. 
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Table E1. Water, soil, and lettuce sample collection dates for microbiological analyses. 

Site  Parameter 
Sample Collection Dates 

(total number of sample replicates) 
Water Samples Soil Samples Lettuce Samples 

Rocha River 

E. coli 
 

Mar., Oct. 2013 
(4) 

(0) (0) 

Coliphage 
Mar., Oct. 2013; Sep., 
Oct., Nov., Dec., 2014 

(5) 

 
Mar., Oct. 2013 

(2) 

 
Mar., Oct. 2013 

(2) 

Giardia & 
Cryptosporidium 

 
Mar., Oct. 2013 

(4) 

 
Mar., Oct. 2013 

(2) 

 
Mar., Oct. 2013 

(2) 

Helminth eggs 
 

Mar., Oct. 2013 
(4) 

 
Mar., Oct. 2013 

(2) 

 
Mar., Oct. 2013 

(2) 

(RT-)qPCR targetsa June 2013 
(2 – 5) (0) (0) 

RBF system 

E. coli 
 

Mar., Oct. 2013 
(3) 

 
Mar., Oct. 2013 

(3) 

 
Mar., Oct. 2013 

(3) 

Coliphage 
Mar., Oct. 2013; Sep., 
Oct., Nov., Dec., 2014 

(8) 

 
Mar., Oct. 2013 

(3) 

 
Mar., Oct. 2013 

(3) 

Giardia & 
Cryptosporidium 

 
Mar., Oct. 2013 

(3) 

 
Mar., Oct. 2013 

(3) 

 
Mar., Oct. 2013 

(3) 

Helminth eggs 
 

Mar., Oct. 2013 
(3) 

 
Mar., Oct. 2013 

(3) 

 
Mar., Oct. 2013 

(3) 

PMMoV (RT-qPCR); 
AdV (regular PCR) 

June 2013 
(10) (0) June 2013 

(15) 

All other  
(RT-)qPCR targetsb 

June 2013 
(5 – 10) (0) (0) 

a  RV, AdV (qPCR only), PMMoV, and HF183 
b  RV, AdV (qPCR only), and HF183 only 
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E.5  Quantitative Polymerase Chain Reaction (with Reverse Transcription) ((RT-)qPCR) 

The DNA or cDNA samples were analyzed in duplicate. For EAV, PMMoV, AdV, and RV assays, a third 

replicate was either diluted 2:20 or spiked with 105 copies of custom-made pIDTSMART purified plasmids with 

ampicillin resistance (Integrated DNA Technologies, Coralville, IA, USA), to test for qPCR inhibition. All 

pIDTSMART purified plasmids contained the target sequence of the assay, which was identified from the following 

GenBank sequences: NC_002532.2 (EAV), AB550911.1 (PMMoV), L19443.1 (AdV), and HM627561.1 (RV). All 

samples were run alongside a six- or seven-point standard curve of plasmids, ranging from 10 - 107 plasmids per 

reaction for RV and EAV, from 100 – 108 plasmids per reaction for PMMoV, from 100 – 107 plasmids per reaction 

for AdV, and from 1 – 106 plasmids per reaction for HF183. Standard curve dilutions were run in duplicate or 

triplicate during each run and all of the data were pooled together at the end to produce a single standard curve for 

each assay. All no-template controls, which contained molecular grade water, were also analyzed in duplicate for 

each (RT-)qPCR analysis to ensure no cross-contamination. All standard curves met the recommended standards for 

qPCR, having R2 values >0.97 and qPCR efficiencies between 90% and 110% (Bustin et al. 2009).  

Up to four plates were analyzed per assay. Each 25 μL qPCR reaction (20 μL for the AdV assay) contained 

2 μL or 5 μL volumes of sample DNA or cDNA, 1x Taqman Environmental Master Mix 2.0 (Life Technologies, 

Grand Island, NY), as well as primers, probes, and other reagents with the concentrations shown in Tables E2 and 

E3. The ABI7500 Real Time PCR system (Life Technologies, Grand Island, NY) was used with the cycling 

temperatures and conditions shown in Table E3. The 7500 software v2.0.6 (Life Technologies) was used, with the 

default settings, to determine the quantification cycle (Cq) values for each qPCR well. The results for the standard 

curves for each of the assays are presented in Table E4. The number of virus copies in unknown samples was 

determined by comparing the quantification cycle (Cq) value of the sample to the log-linear relationship between the 

Cq values and copy numbers of the standard dilution curve. 

 

E.6  Determination of Process Limit of Detection (pLOD) for (RT-)qPCR 

The pLOD for a (RT-)qPCR assay is defined as the lowest concentration at which amplification occurs 

before 40 cycles for 95% of positive sample replicates (i.e., the concentration for which <5% failed reactions occur). 

A very large number of sample replicates would be required to determine the concentration with this probability of 

amplification. Therefore, an exponential survival model was applied to the standard dilution series data, to 
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determine a theoretical pLOD that corresponds with 95% probability. The methods used for this model follow those 

described for QMRA dose-response models (Haas et al. 2014),  as the two situations can be viewed as analogous. 

The process of qPCR amplification requires that a reaction must contain at least one copy (and not less) of the target 

genome sequence, and these genome targets may undergo decay, or a number of other factors may otherwise inhibit 

the qPCR; thus, only a fraction of the genome targets may successfully undergo the reaction and exhibit 

amplification. The survival model was constructed based on the following three assumptions: 1) 

DNA/cDNA/plasmids in samples are randomly distributed into reaction wells (i.e. the Poisson distribution can be 

assumed); 2) each DNA/cDNA/plasmid copy has an independent and identical probability of “surviving” the 

conditions to successfully complete the qPCR (i.e. the binomial distribution can be assumed); 3) at least one 

DNA/cDNA/plasmid copy has to be physically present in the qPCR in order to cause amplification within 40 cycles. 

Given these three assumptions, the probability of amplification is described by the following equation, where j 

represents the number of target genome copies actually present in a qPCR well, d represents the mean number of 

target genome copies added to each qPCR well (mean concentration multiplied by volume pipetted into the PCR 

well), k represents the number of genome copies that successfully “survive” to complete the qPCR, and r represents 

the probability of “survival”: 

  (E1) 

  (E2) 

  (E3) 

As demonstrated previously (Haas et al. 2014), assuming that kmin = 1, Equations E1, E2, and E3 simplify 

to give the following exponential model, which specifies the probability of amplification, given the mean number of 

target genome copies added to a reaction well and assuming a “survival” probability r (which is assumed to be 

unique for each (RT-)qPCR assay): 
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  (E4) 

The pLOD is the number of target genome copies (d) that correspond with a 95% probability of 

amplification (Pa(d)). Using categorical data for each of the standard curve dilution series (the number of times 

amplification occurred (Xamp,q) in the qth standard dilution series), and the total number of trials for the qth standard 

dilution (Ns)), the r value producing the minimum deviance (Y) is found using a log-likelihood ratio (Haas et al. 

2014), where fant,q is the anticipated probability of amplification (fant,q = P1(q)), and fobs is the observed fraction of 

amplification (fobs,q = Xamp,q / Ns,q) for the qth standard dilution: 

  (E5) 

If the measured fluorescence for a sample did not pass the (RT-)qPCR threshold value before 40 cycles for 

any of the sample replicates, the sample was labeled as “no amplification (NA)”, and the concentration was 

considered to be below the limit of detection (<LOD). 

 

E.7  Estimation of Concentration Distribution for Samples with >80% Censored Values 

Log-normal distributions were assumed for the concentration of all pathogens for use in the QMRA. With 

the exception of RV and AdV, samples contained <80% censored values, and the robust regression-on-order 

statistics (ROS) method was used to specify the mean and standard deviations and define the log-normal 

distributions (Helsel 2012). However, for RV, >80% of the sample replicates were censored. It was assumed that the 

95th percentile of the log-normal distribution was equal to the pLOD, and the survival function (Equation E4) was 

used to determine the median value of the log-normal distribution of the RV concentration in the RBF well (i.e., the 

proportion of positive samples to total samples was substituted in place of Pa(d), and the equation was solved for d). 

With those two assumptions of the median and 95th percentile, the log-normal distribution was completely defined. 

AdV was not detected at all in water from the RBF well using qPCR, but it was detected in 2 out of 5 

sample replicates using the regular nested PCR assay. The most probable number method was used to estimate the 

median value of the log-normal distribution for AdV: 
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  (E6) 

where Xamp is the number of sample replicates detected positive via nested PCR, N is the total number of sample 

replicates analyzed using the nested PCR assay, and V is the effective volume of the sample analyzed (calculated as 

the inverse of the nested PCR limit of detection). It was assumed that the mean of the log-normal distribution was 

equal to the natural logarithm of MPN, and that the 95th percentile of the log-normal distribution was equal to the 

AdV qPCR pLOD. With those assumptions, the distribution was completely defined. 

 

E.8  Giardia and Cryptosporidium Analysis 

Giardia cysts and Cryptosporidium oocysts were quantified in water, soil, and crop samples using a 

standard method (US EPA 2005), with the following modifications. For water samples, 5 to 10 L were concentrated 

to 10 mL by centrifugation in 50 mL centrifuge tubes at 1,100×g for 15 min. The supernatant was discarded and the 

pellet was resuspended in 10 mL of sterile DI water. Resuspended pellets from multiple centrifuge tubes were 

combined into a single centrifuge tube and the process was repeated (centrifugation, discarding of supernatant, 

resuspension of pellet), until only 10 mL remained. For soil samples, 25 g of soil were mixed with 100 mL of Tris-

Tween buffer (TTB; 50 mM Tris with 0.5% v/v Tween 80) for 15 min, then passed through Whatman Grade 1 filter 

paper (Oberon SRL, La Paz, Bolivia). The filter was washed three times with 200 mL of TTB. For lettuce samples, 

25 g were mixed with 200 mL of TTB in a blender (low setting) for 2 min. This mixture was filtered over a 100-

mesh sieve (149 µm pore size) and washed with 200 mL of TTB. TTB filtrate from lettuce and soil samples was 

centrifuged at 1,100×g for 15 min to concentrate to 10 mL. (Oo)cysts were then further concentrated using 

immunomagnetic separation, and stained with fluorescent antibodies for subsequent microscopic examination. 
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Table E2. (RT-)qPCR primers and probes. 

Assay Primers and Probes (5’-3’)* Amplicon size (bp) Reference 

Equine arteritis virus (EAV) 
F: CTTGTGCTCAATTTACTGG 
R: GGCAGAGGTACAGAATAG 
[TxRed]TGCAGCTTATGTTCCTTGC[BHQ-2] 

115 
(Svraka et al. 
2009) 

Pepper mild mottle virus 
(PMMoV) 

F: GAGTGGTTTGACCTTAACGTTTGA 
R: TTGTCGGTTGCAATGCAAGT 

[FAM]CCTACCGAAGCAAATG[TAMRA] 

68 
(Rosario et al. 
2009) 

Human rotavirus group A 
(RV) 

F: ACCCTCTATGAGCACAATA 
R: GGTCACATAACGCCCCTA 
[FAM]CTAACACTGTCAAAAACCTAA[TAMRA] 

73 
(Svraka et al. 
2009) 

Human adenovirus 
(AdV) 

F: GGACGCCTCGGAGTACCTGAG 
R: ACIGTGGGGTTTCTGAACTTGTT 
[FAM]CTGGTGCAGTTCGCCCGTGCCA[MGBNFQ] 

96 

(Jothikumar 
et al. 2005; 
Staley et al. 
2012b) 

Salmon sperm DNA 
F: GGTTTCCGCAGCTGGG 
R: CCGAGCCGTCCTGGTC 
[FAM]AGTCGCAGGCGGCCACCGT[TAMRA] 

77 
(Haugland et 
al. 2005; US 
EPA 2010c) 

HF183 Bacteroides 16S rRNA 
genetic marker 

F: ATCATGAGTTCACATGTCCG 
R: TACCCCGCCTACTATCTAATG 
[FAM]TTAAAGGTATTTTCCGGTAGACGATGG[TAMRA] 

84 
(Staley et al. 
2012a) 

* F = forward; R = reverse;  
TxRed = texas red; BHQ = black hole quencher; FAM = 6-Carboxyfluorescein; TAMRA = tetramethylrhodamine;  
MGBNFQ = minor groove binder non-fluorescent quencher (Life Technologies, Grand Island, NY, USA) 
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Table E3. Quantitative polymerase chain reaction chemistrya and cycling conditions. 

Assay Primer Concentrations 
Probe  

Concentrations 
Cycling Conditions 

Equine arteritis virus  
(EAV) 

500 nM each 250 nM 
95°C for 10 min, then 40X:  
(95°C for 10 s, 52°C for 20 s, 60°C for 1 min) 

Pepper mild mottle virus 
(PMMoV) 

400 nM each 125 nM 
95°C for 10 min, then 40X:  
(95°C for 30 s, 53°C for 1 min, 60°C for 1 min) 

Human rotavirus group A  
(RV) 

500 nM each 250 nM 
95°C for 10 min, then 40X:  
(95°C for 10 s, 43°C for 20 s, 60°C for 1 min) 

Human adenovirus  
(AdV) b 

250 nM each 150 nM 
95°C for 10 min, then 40X:  
(95°C for 15 s, 55°C for 20 s, 60°C for 1 min) 

Salmon sperm DNA 
(Sketa22) c 

1,000 nM each 80 nM 
95°C for 10 min, then 40X:  
(95°C for 15 s, 60°C for 2 min) 

HF183 Bacteroides 16S rRNA 
genetic marker c 

1,000 nM each 80 nM 
50°C for 2 min, 95°C for 10 min, then 40X:  
(95°C for 15 s, 60°C for 1 min) 

a  Taqman Environmental Master Mix 2.0 (Life Technologies, Grand Island, NY, USA) was added to each reaction at a final concentration of 1x. The total 
reaction volume was 25 μL, unless otherwise noted. The reaction chemistry consisted of Taqman Environmental Master Mix 2.0, primers and probe (at 
concentrations specified above), template DNA/cDNA (2 μL or 5 μL), and adjusted to the final volume with molecular grade water. 

b Total reaction volume for this assay was 20 μL. 
c Bovine serum albumin (BSA) was added to the reaction mix to a final concentration of 0.2 mg mL-1 for these assays  
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Table E4. (RT-)qPCR standard curve summary data. 

Assay Copies Average Cq Value  
(Stand. Dev.) 

Number of Replicates that 
Amplified 

Total Number of 
Replicates 

Pepper mild mottle virus 
(PMMoV) 

10,000,000 16.9 (0.9) 7 7 
1,000,000 20.1 (0.9) 7 7 
100,000 23.7 (1.0) 7 7 
 10,000* 26.8 (0.9) 7 7 

1,000 30.6 (1.5) 7 7 
100 34.0 (1.2) 7 7 
10 38.3 (0.2) 2 3 

Human rotavirus group A  
(RV) 

10,000,000 17.0 (0.4) 8 8 
1,000,000 20.7 (0.3) 8 8 
100,000 24.2 (0.4) 8 8 
10,000 27.4 (0.5) 7 7 
 1,000* 31.6 (1.0) 8 8 

100 35.2 (1.1) 8 8 
10 37.7 (1.0) 4 8 

Human adenovirus  
(AdV) 

10,000,000 22.4 (0.3) 4 4 
1,000,000 25.9 (0.5) 6 6 
100,000 30.1 (0.3) 6 6 
 10,000* 33.7 (0.3) 5 5 

1,000 36.5 (1.1) 2 6 
100 38.4 (1.2) 2 6 

HF183 Bacteroides 16S  
rRNA genetic marker 

1,000,000 17.3 (0.1) 3 3 
100,000 21.6 (0.1) 2 2 
10,000 24.6 (0.1) 3 3 
1,000 28.1 (0.0) 3 3 
100 29.8 (0.1) 3 3 
 10* 34.1 (0.1) 3 3 

1 38.2 (0.0) 2 3 
* Limits of quantification (LOQ) 
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E.9  Markov Chain Monte Carlo 

OpenBUGS (v3.2.2, rev. 1063) was used to generate initial values and sample from the joint posterior 

density function using Markov Chain Monte Carlo (MCMC) with one chain. The OpenBUGS software conducts the 

Bayesian analysis using the adaptive Metropolis block updating algorithm for estimating dose-response model 

parameters (Schmidt et al. 2013). The OpenBUGS code used for Rotavirus is provided below. The box plots of the 

dose-response model parameters and history plots from MCMC simulations are shown in Figures E4 and E5.  

 

E.10  Sample OpenBUGS Code for Rotavirus QMRA Model 

model 
 { 
### Calculate a and b using the dose response data 
 # p[i] = probability of infection due to integer dose d[i]. 
 # Beta-binomial probability of infection 
 # a = alpha (shape) parameter of beta distribution describing variation in host-pathogen 
 # b = beta (shape) parameter of beta distribution describing variation in host-pathogen 
 # lambda = mean # of pathogens (mean dose) consumed by ith subject in Ward et al (1986) 
 # X = infection indicator (Ward et al 1986) 
  loga ~ dunif(-6, 6) 
  logb ~ dunif(-6,6) 
  a<-pow(10,loga) 
  b<-pow(10,logb) 
   for(i in 1 : n) { 
    d[i]~dpois(lambda[i]) 
    p[i]<- 1-exp(loggam(a+b)+loggam(d[i]+b)-loggam(b)-loggam(d[i]+a+b)) 
    X[i]~dbin(p[i],N[i]) 
    }  
 
### Obtain the actual dose(dt) ingested by an individual, and calculate the probability of 
infection/illness 
 # dt[i] = dose for the ith subject consuming lettuce in Cochabamba 
 # W = weight of lettuce consumed by Bolivians per person per day (grams) (from surveys) 
 # C = concentration of pathogens in irrigation water (organisms / L) 
 # H = harmonization factor 
 # V = volume of irrigated water caught by lettuce (mL/gram); 0.001 is to convert mL to L 
 # k = in-field decay rate (1/days) 
 # t = time between last irrigation and lettuce harvested (days) 
 # pinf = daily probability of infection 
 # Xinf = infection indicator variable for QMRA 
 # pill = daily probability of illness 
 # pillinf = conditional probability of illness given infection 
 
    for(i in 1:m){  
  dtw[i] <-W[i]*Cw*H*V*0.001*exp(-k*t) 
  pinfw[i] <- 1-exp(loggam(a+b)+loggam(dtw[i]+b)-loggam(b)-loggam(dtw[i]+a+b)) 
  Xinfw[i] ~ dbern(pinfw[i]) 
  pillw[i] <- pillinf*pinfw[i] 
 
  dtr[i] <-W[i]*Cr*H*V*0.001*exp(-k*t) 
  pinfr[i] <- 1-exp(loggam(a+b)+loggam(dtr[i]+b)-loggam(b)-loggam(dtr[i]+a+b)) 
  Xinfr[i] ~ dbern(pinfr[i]) 
  pillr[i] <- pillinf*pinfr[i] 
  } 
   pillinf ~ dunif(0.35,0.9) 
   Cw ~ dlnorm(4.484,0.63) 
   Cr ~ dlnorm(15.24,3.69) 
   H ~ dunif(0.000526, 0.001) 
   V1 ~ dlnorm(-4.57,2) 
   V <- V1 + 0.006 
   k ~ dnorm(1.07, 14.29)T(0, 1000) 
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   t ~ dunif(3, 4) 
    
   mean.pinfw <- mean(pinfw[]) 
   mean.pinfr <- mean(pinfr[]) 
 
### Obtain the annual probability of illness and estimate the annual disease burden 
 # annual.pill = annual probability of illness 
 # days = number of days per year the subjects consume lettuce 
 # annual.db = annual disease burden 
 # B = disease burden per case of illness 
 # Sf = susceptible fraction of the population 
 # pr = percentage of the population that has natural resistence (over age of 5) 
 # e = effectiveness of the vaccine 
 # pv = percentage of the population that have received the vaccine   
  for(g in 1:m){ 
   annual.pillw[g] <- 1-pow((1-pillw[g]), days[g]) 
   annual.dbw[g] <- annual.pillw[g]*B*Sf 
    
   annual.pillr[g] <- 1-pow((1-pillr[g]), days[g]) 
   annual.dbr[g] <- annual.pillr[g]*B*Sf 
    
   cred.diff[g] <- annual.dbr[g] - annual.dbw[g] 
   percent.change[g] <- cred.diff[g] / annual.dbr[g] 
  } 
   
  Sf <- 1-(pr+(1-pr)*e*pv) 
  B ~ dunif(0.015,0.026) 
  pr <- 0.87 
  e ~ dunif(0.54,0.79) 
  pv <- 0.78 
   
  mean.annual.pillw<-mean(annual.pillw[]) 
  mean.annual.dbw<-mean(annual.dbw[]) 
  mean.annual.pillr<-mean(annual.pillr[]) 
  mean.annual.dbr<-mean(annual.dbr[]) 
 
### Obtain the annual probability of illness and estimate the annual disease burden using WHO 
assumptions and Bolivia data 
  dtwho <- 100*Cw*H*V*0.001*exp(-k*t) 
  pinfw.who <- 1-exp(loggam(a+b)+loggam(dtwho+b)-loggam(b)-loggam(dtwho+a+b)) 
  Xinfwho ~ dbern(pinfw.who) 
  pillw.who <- pillinf*pinfw.who 
  annual.pillw.who <- 1-pow((1-pillw.who), 150) 
  annual.dbw.who <- annual.pillw.who*B*Sf 
 
  dtbol <-  34*Cw*H*V*0.001*exp(-k*t) 
  pinfw.bol <- 1-exp(loggam(a+b)+loggam(dtbol+b)-loggam(b)-loggam(dtbol+a+b)) 
  Xinfbol ~ dbern(pinfw.bol) 
  pillw.bol <- pillinf*pinfw.bol 
  annual.pillw.bol <- 1-pow((1-pillw.bol), 32) 
  annual.dbw.bol <- annual.pillw.bol*B*Sf 
   
  dtwhor <- 100*Cr*H*V*0.001*exp(-k*t) 
  pinfr.who <- 1-exp(loggam(a+b)+loggam(dtwhor+b)-loggam(b)-loggam(dtwhor+a+b)) 
  Xinfwhor ~ dbern(pinfr.who) 
  pillr.who <- pillinf*pinfr.who 
  annual.pillr.who <- 1-pow((1-pillr.who), 150) 
  annual.dbr.who <- annual.pillr.who*B*Sf 
   
  dtbolr <-  34*Cr*H*V*0.001*exp(-k*t) 
  pinfr.bol <- 1-exp(loggam(a+b)+loggam(dtbolr+b)-loggam(b)-loggam(dtbolr+a+b)) 
  Xinfbolr ~ dbern(pinfr.bol) 
  pillr.bol <- pillinf*pinfr.bol 
  annual.pillr.bol <- 1-pow((1-pillr.bol), 32) 
  annual.dbr.bol <- annual.pillr.bol*B*Sf 
 } 
Data 
list(n=8, m=33) 
 
#Dose response data 
lambda[ ] N[ ] X[ ] 
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0.009 7 0 
0.09 7 0 
0.9 7 1 
9 11 8 
90 7 6 
900 8 7 
9000 7 5 
90000 3 3 
END; 
 
 
#Lettuce consumption data 
W[ ] days[ ] 
5.1 78 
7.7 78 
13.3 78 
19.0 78 
124.4 12 
9.5 182 
22.1 78 
11.4 182 
26.5 78 
5.7 365 
11.4 182 
14.2 182 
9.0 286 
14.2 182 
37.9 78 
19.0 182 
19.0 182 
44.2 78 
44.2 78 
22.7 182 
11.3 365 
14.2 365 
14.2 365 
28.4 182 
28.4 182 
66.3 78 
66.3 78 
79.6 78 
18.9 365 
28.4 365 
132.7 78 
133.0 182 
349.2 78 
END;  
 

 
Figure E2. Credible intervals from MCMC for QMRA dose-response parameter estimates. (RV = rotavirus; 
AdV = adenovirus; Crypto = Cryptosporidium) 
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Figure E3. History for MCMC estimates of dose-response parameters for a) rotavirus, b) adenovirus, c) 
Cryptosporidium, and d) Giardia (a = alpha, b = beta) 
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E.11 Dose-Response Data 

The dose-response data from clinical studies using human volunteers are presented in Table E5. A mixed 

set of dose-response data were used for AdV and Cryptosporidium. Currently, the only dose-response data available 

for AdV (Couch et al. 1966, 1969) are for respiratory infections caused by serotype 4, not for gastrointestinal illness 

caused by other serotypes of AdV transmitted via ingestion. Nevertheless, these data have been used by others to 

model the risk of gastrointestinal illness resulting from the accidental ingestion of adenoviruses in water or food 

(Chigor et al. 2014; Crabtree et al. 1997; Soller et al. 2010; Viau et al. 2011). However, AdV 4 may only represent 

fraction of the adenoviruses in water samples, and using dose-response data from AdV to model the probability of 

gastrointestinal infection via the oral route may overestimate the actual risks (Kundu et al. 2013). Some previous 

QMRA studies with AdV (Chen et al. 2012; Chigor et al. 2014; Crabtree et al. 1997; National Research Council 

2012; Soller et al. 2010; US EPA 2010a; Viau et al. 2011) and Cryptosporidium (de Man et al. 2014; Ottoson and 

Stenström 2003; Teunis et al. 1996) have used the exponential dose-response model, with simple point estimates of 

~0.4172 and ~0.004, respectively, for the parameter r. These are the best-fit values for only one set of dose-response 

data for each pathogen: AdV 4 (aerosolized) (Couch et al. 1966) and an Iowa strain of Cryptosporidium parvum 

(DuPont et al. 1995). In the present study, dose-response data from several different studies were used. There are 

advantages to using data from a combination of dose-response studies (Kundu et al. 2013), especially since dose-

response relationships may be different for different isolates of the same pathogen (Teunis et al. 2002). 

Table E5. Dose-response data used in QMRA model. 

Pathogen Assumptions References 

Rotavirus λ = c(0.009,0.09,0.9,9,90,900,9000,90000) 
N = c(7,7,7,11,7,8,7,3); X = c(0,0,1,8,6,7,5,3) (Ward et al. 1986) 

Adenovirus lambda = c(3,10,14,79,400,1,5,11,1000) 
N = c(6,2,2,3,3,3,3,3,6); X = c(0,0,1,2,3,1,3,3,6) (Couch et al. 1966, 1969) 

Giardia lambda = c(1,10,25,100,10000,100000,300000,1000000) 
N = c(5,2,20,2,3,3,3,2); X = c(0,2,6,2,3,3,3,2) (Rendtorff 1954) 

Cryptosporidium 

λ = c(10,30,100,500,30,100,300,500,1000,10000,100000, 
1000000,100,300,1000,3000,500,1000,5000,10000) 

N = c(3,3,3,5,5,8,3,6,2,3,1,1,4,5,3,4,5,3,5,4);  
X = c(2,2,3,5,2,4,2,5,2,3,1,1,2,2,1,3,3,2,2,4) 

(DuPont et al. 1995; 
Messner et al. 2001; 

Okhuysen et al. 2002) 

 

 

 



www.manaraa.com

204 

E.12  Convenience-Sample Market Surveys 

Convenience-sample surveys were administered by Maryann Cairns (Michigan Technological University) 

to 42 market-goers in August 2013. The following information was collected: gender, age, language(s) spoken at 

home, number of people living in the household, quantity of lettuce purchased, and frequency with which lettuce is 

consumed at home. Of the 42 market-goers surveyed, nine were omitted from further analysis due to lack of survey 

completion or because they reported commercial use of the lettuce purchased. Data from the remaining 33 surveys 

were used to estimate the average lettuce mass consumed in the household per person per year. 

Half of the respondents reported using Spanish exclusively in the household; 38% reported speaking a 

mixture of Spanish and indigenous languages; the remaining 12% reported speaking foreign languages; this was not 

significantly different from census data (α = 0.05, p-value = 0.281). 

 

E.13  Mass of Lettuce Consumed in Bolivia 

Because lettuce is often sold by the head, five heads of lettuce were weighed, and the average value was 

used in calculations to estimate lettuce consumption rates by market-goers.  These heads of lettuce were chosen at 

random from several different market stalls and purchased during the market surveys. In the QMRA, lettuce 

consumption estimated for surveyed market-goers (Figure E4) was compared with average lettuce production rates 

per capital in Bolivia (Table E6). It can also be compared with lettuce consumption reported for other regions in the 

world (Table E7).     

Table E6. Lettuce production and use in Bolivia (Instituto Nacional de Estadistica 2008). 

Department 
Population 
(thousands) 

Annual Lettuce Production Percent sold in the domestic 
market or consumed by 

farmers 
Total 

(metric tons) 
Per Capita 

(kg) 

Chuquisaca 576 294 0.5 100% 

La Paz 2,706 1,506 0.6 91% 

Cochabamba 1,758 4,505 2.6 100% 

Oruro 494 113 0.2 100% 

Potosí 824 359 0.4 100% 

Tarija 482 654 1.4 99% 

Santa Cruz 2,655 3,368 1.3 92% 

TOTAL 9,495 10,799 1.1 96% 
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a) 

 

 b) c) 
 

Cumulative frequency 

     

Figure E4. Distributions of a) the estimated amount of lettuce consumed per person per year in Cochabamba, 
b) the estimated serving size of lettuce at home based on survey responses, and c) the mean annual frequency 
with which lettuce is served at home, based on bootstrapping survey response data (1,000 times). 

E.14  Quantitative Microbial Risk Assessment Sensitivity Analysis 

To assess model sensitivity to input parameters, Spearman rank order correlation coefficients were 

calculated between model inputs and the model output (estimated disease burden in DALYs per person per year), 

using the 40,000 values simulated and recorded by MCMC. To evaluate the sensitivity of lettuce serving size, 

lettuce consumption frequency, and vaccine coverage rate, the former two parameters were input as uniform 

distributions using the minimum and maximum values estimated from the market survey data; and the vaccine 

coverage rate (fv) was input as a uniform distribution between 0 and 1 (solely for the purposes of the sensitivity 

analysis). 
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Table E7. Assumptions about the mass of lettuce consumed and frequency of consumption from different geographic regions. 

Average mass per  
person per year (kg) 

Lettuce consumed  
(g person-1 day-1) 

Frequency 
(days year-1) Population References 

28.0 Lognormal(4.35,1.27)  
(median = 76.6) 365 China (Mok and Hamilton 2014) 

15.0 100 150 
n/a  

(example from 2006  
WHO Guidelines) 

(Shuval et al. 1997; WHO 2006) 

6.0 Mixture  
(mean = 23.8) 251 Melbourne, Australia (Barker et al. 2013a) 

4.4 Average = 20.7 ±26.4 
(95% UCL = 74.2) 214 Representative sample of 3000 

people in Spain (Sales-Ortells et al. 2015) 

3.4a 19a 
(sd = 65) 

169 
(sd = 110) 

Market-goers in Cochabamba, 
Bolivia data from this study 

3.4 65  
(overall) 52 People in the Mezquital Valley of 

Mexico 
(Navarro and Jiménez 2011; Navarro 

et al. 2009) 

2.5 6.8 365 Brazil (Pavione et al. 2013) 

2.3 Uniform(10, 12) 208 Accra, Ghana (Seidu et al. 2008) 

2.2 30 – 54  52 Children in the Mezquital Valley of 
Mexico 

(Navarro and Jiménez 2011; Navarro 
et al. 2009) 

1.1b - - Bolivia (overall) (Instituto Nacional de Estadistica 
2008) 

a median value; distribution appeared to be non-normal 
b represents the mass of lettuce produced annually per capita in Bolivia for domestic consumption 
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